
Invited Paper: APS: Open-Source Hardware-Software
Co-Design Framework for Agile Processor Specialization

Youwei Xiao, Yuyang Zou, Yansong Xu, Yuhao Luo, Yitian Sun, Chenyun Yin, Ruifan Xu, Renze Chen, Yun Liang∗
Peking University, Beijing, China

Abstract—APS is an open-source framework for agile hardware-
software co-design of domain-specific processors. It provides both hard-
ware synthesis and compiler infrastructure to facilitate the development
of instruction extensions (ISAXs) for application acceleration. The frame-
work proposes a unified instruction extension interface for seamless
integration with diverse RISC-V SoC ecosystems. Based on the unified
interface, APS introduces a cross-level architecture description language
(CADL) for comprehensive instruction behavior specification, which is
translated into a dynamic pipeline architecture through its synthesis flow.
Besides, APS’s compiler infrastructure introduces a pattern-matching
engine for the automated utilization of ISAXs in general programs. It
also incorporates bitwidth-aware vectorization that leverages operand
bitwidth information to reduce the overhead of calling ISAXs. We conduct
case studies across multiple workloads, including cryptography, machine
learning, and digital signal processing. With fewer than 175 lines of ISAX
description, APS achieves 2.29× to 14.99× speedup for each case study,
demonstrating APS’s practical productivity and acceleration capability.
Overall, APS offers a complete, end-to-end methodology that significantly
reduces the development cycle of ISAXs, making agile processor special-
ization practical to the research and open-source hardware communities.

I. INTRODUCTION

The rapid evolution of domain-specific applications demands ag-
ile development of Application-Specific Instruction-Set Processors
(ASIPs) to maintain competitive performance and efficiency. RISC-V,
as an open instruction set architecture (ISA), facilitates the integration
of instruction extensions (ISAXs) with the general processor and
enables processor specialization. RISC-V ISAXs have enabled exten-
sion and acceleration for diverse domains, including digital signal
processing [16], artificial intelligence [5], and cryptography [10].
However, current open-source RISC-V ecosystems impose constraints
on agile processor specialization, as they are tied to specific platforms
or narrowly scoped design tasks, rather than providing a unified and
general framework for hardware-software co-design.

We identify several fundamental challenges in developing domain-
specific processors with ISAXs. The first challenge is interface diver-
gence. Existing System-on-Chip (SoC) frameworks support different
instruction extension interfaces, such as the Rocket Custom Copro-
cessor (RoCC) [6] interface and the Core-V eXtension interface (CV-
X-IF) [1], which, although conceptually similar, lack interoperability.
This fragmentation forces designers to learn the corresponding inter-
face and implement their ISAXs in a compatible, low-level fashion for
every target platform, significantly increasing development overhead
and limiting design reuse. The second challenge is ISAX-specific
synthesis. Agile ASIP development requires synthesis features that
effectively bridge the gap between high-level algorithmic descriptions
and efficient hardware implementations. Current tools fall short in
several critical aspects: traditional HLS tools [14], [32] overlook
the intricate interactions between ISAXs and the base processor
system, such as memory system access; existing ASIP solutions, like
Longnail [21], lack support for stateful hardware behaviors, including
hardware loops and pipelines.

∗
Corresponding author: ericlyun@pku.edu.cn

The final challenge is compiler support. Hardware agility must be
matched by software development for practical utilization of ISAXs.
Existing open-source ASIP frameworks [22] do not provide the ISAX-
compliant compiler infrastructure featured by commercial toolchains,
including Cadence Tensilica [9], Synopsys ASIP Designer [28], and
Codasip Studio [12], preventing developers from conveniently lever-
aging their custom ISAXs. Moreover, the general-purpose register-
based RISC-V instruction types put architectural constraints on the
operand and result width of ISAXs, e.g., at most two 32-bit operands
and one 32-bit result for an R-Type instruction. ISAXs should pack
low-bitwidth arguments and results to leverage the precious register
bandwidth. The compiler should automatically transform the original
program to utilize such vectorized ISAXs, which is not explored by
any prior solutions.

To address these challenges, we present APS, an open-source
hardware-software co-design framework that enables agile research
on domain-specific processor specialization. Specifically, we identify
the common abstraction for ISAX integration and propose the APS-Itfc
interface to provide seamless portability across different processors
and SoC ecosystems, thereby addressing the challenge of interface di-
vergence. APS-Itfc ensures compatibility across the Rocket Chip [6]-
generated SoCs from the Chipyard [4] framework and the Croc [25]
SoC from the PULP platform [23]. For ISAX-specific synthesis
support, we implement a complete synthesis flow, APS-Synth, that
translates a cross-level architecture description language, CADL, into
a register-transfer level (RTL) implementation of the synthesized
dynamic pipeline architecture. Our synthesis framework provides
rich features, including ISAX-processor interaction, stateful hardware
behavior, and flexible interoperability between high-level abstractions
and low-level custom components. For the compiler infrastructure,
we introduce APSC, which provides a hybrid pattern matching engine
and a bitwidth-aware vectorization feature for automated and efficient
utilization of custom ISAXs in general applications.

Our contributions are as follows:

• We propose the first open-source1 hardware-software co-design
framework APS for agile ASIP specialization.

• We introduce the APS-Itfc interface to provide seamless porta-
bility across different processor platforms, and propose the APS-
Synth framework to provide ISAX-specific synthesis support.

• We present APSC, a compiler framework that enables automated
utilization of ISAXs in general applications through pattern
matching and bitwidth-aware vectorization.

We validate APS through comprehensive case studies spanning
multiple application domains on two RISC-V SoC platforms. For
cryptography, APS accelerates the Number Theoretic Transformation
(NTT) and the polynomial multiplication in the NTT domain by up to
10.16× and 14.99×; For machine learning, the quantized dot-product
ISAX accelerates BitNet b1.58 [19]’s BitLinear layer by 2.29×; For

1https://github.com/pku-liang/aps

20
25

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
O

n
C

om
pu

te
r A

id
ed

 D
es

ig
n

(I
C

C
A

D
) |

 9
79

-8
-3

31
5-

15
60

-7
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
A

D
66

26
9.

20
25

.1
12

40
81

7

Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

Evaluations

Interface and Architecture (Sec. III)

Compiler Framework (Sec. V)

Custom Instruction Hardwares

CROC
SoC

CV32E40X

OBI Bus

UART SRAM

D$

I$

Iss/RF/
Commit

Result Mem

APS-Itfc adapter

ISAX
Hardware

(A)

ISAX
Hardware

(B)
...

APS-Itfc

Chipyard
SoC

Rocket-core D$

I$

cmd.req cmd.resp Hella
Cache

TileLink Bus

UART SRAM

Synthesis Framework (Sec. IV)

Pattern Match Engine
Semantic Match

Profile Match

Automatically Parsing

LLVM-based
Compiler

Opt
BinariesApplications

a.c a.elf

4Stg,in-order 5Stg,in-order

Cross-level Architecture
Description Language

Structured IR
(SIR)

Scheduled SIR
(SSIR)

Transactional
Hardware

ConstructBuild

Physical DesignSimulation

Schedule

CV-X-IF Itfc RoCC Itfc

Bitwidth-Aware
Vectorization

Fig. 1: Overview of the APS framework.

digital signal processing (DSP), APS accelerates a digital phase-
locked loop (DPLL) by up to 8.43×. Each case study only requires
the ISAX description of fewer than 175 SLOC2, and APS automates
the remaining hardware-software co-design tasks in an end-to-end
flow.

II. OVERVIEW

Figure 1 provides an overview of the APS framework. APS-Itfc
(Section III) is a unified ISAX interface with portability across
diverse RISC-V platforms, including the open-source Chipyard [4]
and PULP [23] projects. The ISAX hardware implementation is
synthesized from high-level behavioral specifications written in the
Cross-level Architecture Description Language, CADL. The synthesis
framework, APS-Synth (Section IV), translates CADL into an efficient
hardware implementation that interfaces with the base processors
through the standard APS-Itfc interface. On the software side, the
APSC compiler infrastructure (Section V) automatically generates
ISAX invocation intrinsics and pattern matchers based on the CADL
specification, facilitating practical adoption of ISAXs. APSC also in-
troduces the bitwidth-aware vectorization optimization pass to exploit
vectorized ISAXs. This end-to-end methodology streamlines the entire
development process, from architectural specification to hardware
generation and compiler integration, and runs RTL simulation and
the physical design flow for comprehensive evaluation.

III. INTERFACE AND ARCHITECTURE

In this section, we propose APS-Itfc, a unified interface for ISAX’s
seamless integration into different RISC-V platforms.

A. ISAX Interfaces Across RISC-V Platforms

Leading open-source RISC-V projects have established standard-
ized interfaces for ISAXs. The Chipyard framework [4] provides the
Rocket Custom Coprocessor (RoCC) interface, which is implemented
by Rocket [6] and BOOM [35] cores. Besides, the PULP plat-
form [23] introduces the CORE-V eXtension Interface (CV-X-IF) [1],
implemented in cores such as CV32E40X [26] and CVA6 [33].

2Significant lines of code excluding comments and blank lines

Processor Tile

Custom
Instr.
Unit

L1 D$

RISC-V Core

L1 I$

Instr.
Decoder

RegFile

Controller

rs1, rs2
instr, mstatus

typ, tag, cmd,
addr, phys,

accept, writeback

id, commit_kill

data, rd

id, err

Issue Req
& GPR Req

Result Resp

Issue Resp

Recall Req

Mem
Req

Mem Result

Mem Respexc, exccode

disable
(CV-X-IF)

Same
transaction

always

ready

, rd

, id, we

tag, cmd, phys id, mode, attr
addr, we, size, be, wdata

rdata

disable
(CV-X-IF)

always ready

Same

transaction

Fig. 2: Common processor-ISAX interaction of RoCC and CV-X-
IF protocols. Yellow and green highlights denote protocol signals
specific to RoCC and CV-X-IF, respectively. Common signals are
shown without highlights.

Both RoCC and CV-X-IF adopt decoupled interface designs,
separating the custom ISAX unit from the processor’s main pipeline
through a handshake protocol, as depicted in Figure 2. They share
similar structures. The processor pipeline manages all hazards, en-
suring that source operands are ready before dispatch. It then issues
the decoded instruction and its source operands to the ISAX, which
executes the operation—potentially involving memory accesses via
the core’s load/store unit—and finally writes the result back to the
core’s register file.

However, despite their architectural similarity, ISAXs targeting
different interfaces are inherently incompatible without a complete
and time-consuming reimplementation, due to differing interface
specifications. RoCC prioritizes simplicity for accelerator designers.
Specifically, its basic version consists of four primary channels: two
pairs of request and response channels for instructions and main
memory access. Crucially, RoCC guarantees the commitment of any
offloaded ISAXs, relieving designers from implementing complex
logic to handle instruction recalls. In contrast, CV-X-IF exposes a
commit channel that explicitly notifies the ISAX unit of instruction
commitment or recall. This recall mechanism requires any operations
with side effects (e.g., memory accesses) to defer execution until
confirmation, thereby necessitating a more complex ISAX controller.
Moreover, CV-X-IF employs compact, bidirectional protocols. For
instance, it merges issue requests and responses into a single hand-
shake channel. Different protocol signals in Figure 2 demonstrate the
protocol-level divergence.

B. Unified ISAX Interface Abstraction

Despite the significant disparities between existing ISAX interfaces,
we observe that both interfaces share a common set of underlying
transactional semantics. This shared semantic foundation enables
the definition of a unified abstraction that hides backend-specific
details, thereby facilitating ISAX portability. In APS, we propose the
unified transaction-based ISAX abstraction, APS-Itfc. One transaction
corresponds to a unidirectional data transfer between the processor
and the ISAX, controlled by a pair of valid and ready signals. During

2
Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Semantics for APS-Itfc transactions

Transaction Signature Semantics

1 Issue Req ()→(instr) Receives a new instruction from the core
to begin execution.

2 GPR Req ()→(rf[N]) Receives source operands from the core’s
register file for the current instruction.

3 Recall Req ()→(killed) Check the instruction’s commit status. A
false value for killed guarantees execution.

4 WrMem Req (addr, wdata,
mask)→()

Initiates a memory write access request to
the core’s Load/Store Unit.

5 RdMem Req (addr)→() Initiates a memory read access request to
the core’s Load/Store Unit.

6 RdMem Resp ()→(rdata) Receives the result data (rdata) correspond-
ing to a prior memory load request.

7 Result Resp (data)→() Sends the final result to the core for write-
back, signaling instruction completion.

di
sp

at
ch

di
sp

at
ch

op:7'h0B

op:7'h2B

op:7'h5B

Issue Req
GPR Req

RoCC
Req

RoCC
Resp

Result
Resp

Core
(RoCC)

se
l

re-order control

ISAX
(APS-Itfc)

Slot1

Slot2

Hella
Req

Hella
Resp

rw

rwar
b

se
l

ar
b

RdMem
Resp

ignore

tag addr

data

tag addr

data

Wr

Rd

Wr

Rd

1'b0

Recall
Req

Connect
to other
ISAXs

WrMem
RdMem

Req

1 2

7

3

4 5

6

APS-Itfc Adapter

Fig. 3: APS-Itfc adapter implementation for RoCC interface.

hardware implementation, these transactions are instantiated as slave
interfaces of bypass-capable FIFOs with control logic.

Table I summarizes the semantics for APS-Itfc transactions. Over
the course of an ISAX execution, the processor first offloads it through
an issue request 1 . ISAX units can then request two operands using
the GPR Request 2 . For the Recall Request 3 , it stalls any side-
effect operations and interface transactions of the ISAX until a not
killed promise is received. ISAX can optionally request memory
write 4 and read 5 . Only critical signals are exposed in APS-Itfc
transactions, while other backend-specific signals, such as tag and
size, are handled automatically by the adapter logic. ISAX should
wait for a memory response 6 after sending out a memory request.
The ISAX must send a Result Response 7 to write back the result
to the register file and notify that the execution has finished. APS-
Itfc provides such unified and concise transactions to enable agile
description of ISAX’s interactions with the processor and to support
implementation across different backend platforms.

APS-Itfc adapter implementation: Adapter logic is necessary for
hardware implementation of APS-Itfc towards the target platform.
Figure 3 illustrates the adapter logic from APS-Itfc to RoCC. Each
ISAX instance maintains dedicated instruction and return queues,
indexed by opcode. Offloaded instructions are dispatched to the
corresponding queue, and a shared arbiter selects one response per
cycle for the core pipeline. To preserve the ordering of memory read
responses, we employ a two-slot buffer under the control of a simple
reorder controller that tracks request and response status, ensuring

in-sequence delivery. Write responses are omitted for simplicity.
The complete adapter logic requires only 425 SLOC for RoCC,
demonstrating the ease of adapting APS-Itfc to a specific RISC-V
platform like Rocket Chip [6]. CV-X-IF needs extra 338 SLOC for
the adaptation due to its control logic complexity.

C. Support Multiple Open-Source RISC-V SoC Platforms

At the processor side, we select two representative open-source
RISC-V cores to demonstrate the versatility of our approach. We
support the Rocket core, a 5-stage in-order RISC-V core that im-
plements the RoCC protocol, and the CV32E40X, a 4-stage in-order
RISC-V core that implements the CV-X-IF protocol. To construct
complete SoC designs, we leverage two prominent open-source SoC
generator frameworks: Chipyard for Rocket and Croc for CV32E40X.
Specifically, the Rocket core is integrated into the Rocket Chip
generator to be compatible with the Chipyard ecosystem. For the
CV32E40X, while Croc, an extensible SystemVerilog-based RISC-V
microcontroller platform towards education, offers limited configura-
bility, we extend it with parameterizable instruction and data caches,
enabling robust deployment of real-world workloads.

IV. HARDWARE SYNTHESIS FRAMEWORK

Agile processor specialization requires synthesis support that trans-
lates high-level descriptions of ISAX behaviors into hardware imple-
mentations to boost design productivity. We propose the APS-Synth
framework to synthesize the cross-level architectural description lan-
guage (CADL). It features APS-Itfc support, flexible interoperability
with low-level implementations, and dynamic pipeline generation.

A. Cross-level Architectural Description Language

CADL not only describes the high-level behavior of ISAXs, sup-
porting stateful control flow structures, but also provides direct access
to both the unified APS-Itfc for processor-ISAX interaction and the
custom low-level hardware components. Figure 4a shows an example
of CADL. It comprises three parts:

Static instance definition: Lines 1-5 define three static instances:
acc is a scalar variable, arr is an array variable, and fifo is
a custom FIFO component. The static variables, either scalar or
array, are built-in instances in CADL. Each variable corresponds to a
register of the specified data type; for example, an array variable is
implemented as a single register holding flattened data. In addition to
the built-in instances, CADL provides a general mechanism to define
custom components. For example, fifo at lines 4-5 instantiates a
fifo push module of depth 1 and element data type u32. CADL
can instantiate any low-level hardware modules, either programmed in
the CMT2 [30], [31] framework as transactional modules or imported
as Verilog/SystemVerilog/FIRRTL [17] blackboxes. This provides the
basis for CADL’s flexible interoperability with any low-level designs.

Compilation-time function: Lines 22-28 define a function named
f, which calculates x*k+sum in a recursive manner. All functions in
CADL are interpreted and inlined during compilation. This feature
enables metaprogramming, reducing description complexity.

ISAX description: Lines 6-21 describe the ISAX named misc.
Lines 6-8 describe the misc’s encoding, a R-Type instruction with
the specified opcode and the func7 field. Line 9 reads the integer
register file through the irf syntax and assigns the result to a local
variable named a. Line 10 calls the function f to calculate n=a*2.
Lines 11-17 present a loop structure, describing stateful hardware
control behavior. Line 12 following the with keyword specifies a
loop-carried variable i, whose initial value is 32’d0 and is updated
by the i value inside the loop body (line 14). Lines 14-16 describe

3
Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

static acc: u32 = 0;

static arr: [u32; 2; 2] =

 {{2'd0, 2'd1}, {2'd2, 2'd3}};

static fifo: Instance =

 _instance("fifo_push", 1, u32);

#[opcode(7'b0001011)]

#[funct7(7'b0000000)]

rtype misc(rs1: u5, rs2: u5, rd: u5) {

 let a: u32 = _irf[rs1];

 let n: u32 = f(32'd0, a, 2);

 with

 i: u32 = (32'd0, i_)

 do {

 let i_: u32 = i+1;

 let x: u32 = _mem[i];

 acc = acc + x[15:0];

 } while (i_ < n);

 let x: u32 = acc;

 fifo.push(x);

 _irf[rd] = x;

}

fn f(sum: u32, x: u32, k: usize)->u32{

 return if (k == 0) {

 sum

 } else {

 f(sum+x, x, k-1)

 };

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Cross-level ADL Structured IR (SIR) Scheduled SIR (SSIR) Transactional Hardware RTL

sequence {

 values { // values per sequence

 %0: ("a", u32),

 %1: ("n", u32), // ..more

 }

 block {

 %0 = call[_read_irf](1)

 %1 = add(%0, %0);

 }

 loop(32'd0<>%2, %1<>%1)(%8) {

 sequence { // loop body

 values { .. }

 block(%0, %1) {

 %2 = add(%0, 1)

 %8 = cmp["lt"](%2, %1)

 ... // more

 }

 }

 }->(%2, %3) // exit values

 block {

 %4 = call[read_var](@acc)

 _ = method[_push](@fifo,%4)

 _ = call[_write_irf](%4)

 }

}

(a) Cross-level ADL (CADL)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

(b) Structured IR (SIR)

pipeline {

 stage[0]() {

 %0 = call[_read_irf](1)

 %1 = add(%0, %0)

 } -> (%1)

 loop[1](32'd0<>%2,%1<>%1)(%8)

 update(0) {

 pipeline { // loop body

 stage[1,0](%0, %1) {

 %2 = add(%0, 1)

 %8 = cmp["lt"](%2, %1)

 %3 = call[_read_mem_req](%0)

 } -> (%3)

 stage[1,1](%3) {

 %4=call[_read_mem_resp](%3)

 %5=call[read_var](@acc)

 %6=bits[15,0](%4)

 %7=add(%5, %6)

 _ = call[write_var](@acc, %7)

 }->() } // end pipeline

 }->() // end loop

 stage[2]() {

 %2 = call[read_var](@acc)

 _ = method[_push](@fifo,%4)

 } -> (%2)

 stage[3](%2) {

 _ = call[_write_irf](%2)

 }->()

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

(c) Scheduled SIR (SSIR)

call[_read_irf]

add

FIFO1

&

Issue Req

fire

GPR Req

ready
canEnq

ready

%1

loop entry

32'd0

FIFO1

(%0,%1)

stage-1-0

stage-0

arbiter

(%2,%1)if %8

FIFO1

%3

FIFO1

(%2,%1)
if !%8

loop exit
stage-1-1

C
ou

nt
er

RdMem Req

Mem Resp

FIFO1

stage-2 @fifo
@acc

FIFO1

stage-3 Result Resp

Parse, build,
optimize

Schedule Construct

 APS work CMT2 and CIRCT

(d) Transactional Hardware

Fig. 4: APS Synthesis Framework.

the loop body, where line 15 reads the processor memory through
the mem syntax and line 16 accumulates the result to the acc static
variable. Line 17 describes the continuation condition of the loop.
Lines 18-19 show how CADL accesses or updates the general custom
instance: it calls the method push of the fifo instance to push an
element. CADL’s ISAX description provides rich features from high-
level behavior to low-level module access, enabling comprehensive
ISAX accelerator design for diverse customization requirements.

B. Intermediate Representations

To synthesize CADL into a hardware implementation, we propose
and implement two intermediate representations: Structured IR (SIR)
and Scheduled Structured IR (SSIR). Figure 4b and Figure 4c present
examples of each, respectively.

SIR: directly corresponds to the CADL description, providing
key structures to describe ISAXs’ high-level behavior, including
sequence, block, and loop. SIR facilitates program analysis and
transformations, such as type inference and function interpretation.
A sequence comprises a list of blocks and loops, with a table to
store the values living in the sequence. In Figure 4b, the outermost
sequence (lines 1-25) includes two blocks (lines 6-9 and lines 20-
24) and one loop (lines 10-19), with a value scope (lines 2-5)
holding the value table. The high-level syntax in CADL is lowered
to primitive operations. For example, reading irf is transformed
into call(read irf) at line 7, and the method call fifo.push is
transformed into the method primitive at line 22. The loop structure
specifies the loop-carried variables within the first parentheses and
the condition value in the second. At line 10, there are two loop-
carried variables: the i as described in the CADL, and the n, which
is passed into the loop body to calculate the condition. Both initial
values and update values are passed into the loop body sequence as
the arguments of the first block (line 13). The condition value for
the loop is %8, calculated at line 15. The updated values from the

final iteration of the loop are returned to the outer sequence (%2 and
%3 at line 19) for subsequent usage.

SSIR: represents the scheduled results of the ISAX behavior.
Without losing generality, SSIR adopts the pipeline-based repre-
sentation with stages as the scheduling units. Figure 4c shows a
scheduling solution for SIR in Figure 4b. The outermost pipeline
structure, mapped from a sequence, includes four stages, whose stage
id is shown in the brackets. Notably, loop[1] is treated as a stage
whose execution spans multiple cycles. Besides, every loop specifies
an update stage, indicating which stage prepares for the execution of
the next iteration. In Figure 4c, loop[1]’s update stage is 0, which
means the next iteration will start after stage[1,0], indicating the
initial interval (II) of 1. Every stage inside the loop body pipeline
is prefixed with the loop’s ID in their stage IDs. In addition, the
value passing between the neighbor stages is encoded in SSIR. For
example, stage[2] passes the value %2 to stage[3]. SSIR provides
the appropriate abstraction for representing scheduling solutions,
estimating performance, and preparing hardware generation.

C. Synthesis Flow

Figure 4 presents the synthesis flow from the CADL to the final
RTL implementation. The CADL is first parsed to build SIR, on which
we conduct type inference, function interpretation, and general opti-
mizations such as dead code elimination. Then, the SIR is scheduled
into SSIR, which is further used to construct transactional hardware
in a dynamic pipeline architecture. The transactional hardware is
constructed on the CMT2 [30] framework, which translates the design
into RTL description through the CIRCT [11] project.

ISAX-specific Scheduling: We implement a SDC [13]-based
scheduling infrastructure to schedule the ISAX behavior. In addition
to the general scheduling constraints, such as data dependency
constraints and clock period constraints, we consider more ISAX-
specific constraints: operation position constraints, which specifies

4
Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

the required scheduling stage of certain operations, for example,
call(read irf) must be scheduled at the first stage since the
register file values are passed into an ISAX at its trigger; latency-
insensitivity constraints, which specifies that two latency-insensitive
operations cannot be scheduled at the same stage, avoiding potential
deadlocks caused by execution misalignment. Both constraints are
encoded as difference constraints in the SDC formulation. For loop
scheduling, we currently adopt the normal SDC scheduling on the
loop body sequence, without modulo considerations [34].

Dynamic Pipeline Construction: We construct a dynamic
pipeline architecture in the transactional manner from the SSIR.
Every stage constructs a transaction, which executes its included state
update actions when its fire logic holds. For example, the stage[0]
in Figure 4c constructs the transaction stage-0 in Figure 4d, whose
actions include sending an ISAX issue request, sending a GPR access
request, and enqueueing the summed value into a FIFO for the next
stage to use. The first two actions correspond to APS-Itfc transactions
in Table I, and they are ready only when the processor executes the
ISAX. The fire logic of stage-0 requires that the called APS-Itfc
transactions are ready and the output can be enqueued to the non-
full FIFO. Besides, the loop structure, such as loop[1] in Figure 4c,
is also implemented as transactions, including a loop entry and a
loop exit. The loop entry transaction gets the initial values prepared
by the previous stage and pushes them into the starting FIFO of
the loop body pipeline. The loop update stage, such as stage[1,0]
in Figure 4c, pushes the prepared update values for loop-carried
variables to either the starting FIFO of the loop body pipeline if
the condition is met, or to the FIFO leading the loop exit transaction
otherwise. The loop is equipped with a counter, indicating the number
of in-flight iterations. The loop entry and the loop exit can only
execute when the counter is zero, indicating the end of the loop
structure. The dynamic pipeline architecture features strong latency
insensitivity tolerance. Besides, our architecture supports general loop
pipelining even for nested loop structures. Moreover, arbiters are
necessary for components to be updated by multiple transactions,
such as the leading FIFO of a loop body pipeline and the static
instances (fifo and acc). They are automatically inserted by the
CMT2 compiler during RTL generation.

V. SOFTWARE COMPILER FRAMEWORK

In this section, we propose APSC, an integrated compilation
framework that enables applications to adopt ISAXs for acceleration
automatically.

A. Compiler infrastructure

The overall compilation flow is depicted in Figure 5. It begins
with a Clang-based frontend [18] that translates C source code
into LLVM IR. APSC then automatically generates intrinsic-like C
wrappers from CADL specifications, enabling transparent invocation
of custom ISAXs. Building upon this foundation, we introduce
two key APSC features to specialize the compilation for domain-
specific ISAXs. First, APSC employs a hybrid pattern-matching
engine comprising semantic-based matching followed by profile-
guided matching (Section V-B). Second, APSC introduces a bitwidth-
aware vectorization pass to exploit parallelism within architectural
constraints (Section V-C).

B. Pattern Matching Engine

While compiler intrinsics provide a convenient interface for calling
ISAXs, developers still need to manually modify their programs to
include them, which severely increases the learning curve and brings

Section V-B

Section V-C

a.c

 int32_t out = 0;
 for (int i = 0; i < 8; j += 4){

int32_t rs1 = pack_rs1(activate[i:i+3])
int32_t rs2 = pack_rs2(weight[i:i+3])
out += DotprodW2A8x4(rs1，rs2)

 }

 int32_t out = 0;
 for (int i = 0; i < 8; j++){

int32_t rs1 = activate[i] //8-bit
int32_t rs2 = weight[i] //2-bit
out += DotprodW2A8(rs1，rs2)

 }

Activation

Weight

32 bit

8 bit

Prod
Prod
Prod
Prod

Activation

Weight

8 bit

2 bit
Prod

isax.cadl

Vectorized!

 *(int32_t *)C = GEMV(M, V)

 a = MulShl4(x1, x2)

 t1 = x1 * x2
 t2 = t1 << 4
 a = t2

CADL

r1 r2

Mul

Shl

4

LLVM IR
t2

t1
4

x2x1

Input-Output
Table

Inputs: v[K],M[K][J]
Outputs: C[J]

K

J

 for (int i = 0; i < 2; i++){
for (int j = 0; j < 2; j++){
C[i][j] = 0

for (int k = 0; k < 2; k++){
C[i][j] += M[k][j] * V[k]

 }}}

Semantic-based

(b) Bitwise-Aware
 Vectorize

(a) Pattern-Match
 Engine

Profile-guided

Fig. 5: APS Compiler workflow.

more performance tuning challenges. To automate this process, APSC
incorporates a pattern-matching engine.

APSC automatically parses the SIR emitted by APS-Synth to
construct semantic-based matching functions. Leveraging LLVM’s
built-in pattern-matching infrastructure, these functions can efficiently
identify and substitute semantically equivalent instruction sequences
during the transformation phase. To address complex control flow
constructs, such as nested loops, APSC further employs profile-guided
matching. Specifically, we implement an LLVM IR interpreter to
simulate the program execution. For each program region (e.g., a
basic block or a loop body), APSC analyzes use-def chains to identify
the region’s input and output variables. In particular, instructions that
write to memory are treated as outputs because of their side effects.
The interpreter dynamically compares the observed input-output
behavior of this region with representative input-output pairs collected
offline for each ISAX. Once input-output matching is confirmed, the
compiler automatically rewrites the matched region to invoke the
corresponding ISAX intrinsic, enabling automated adoption of ISAXs
with complex behavior. Since the profile-guided comparison cannot
guarantee the full equivalence between the general program region
and the ISAX behavior, APSC reports the matching and rewriting
status and allows the users to revert any unexpected actions.

As illustrated in Figure 5a, APSC first extracts the behavioral
semantics of the ISAXs through offline semantic parsing and automat-
ically generates matching functions capable of detecting equivalent
instruction sequences, allowing the replacement of these patterns with
dedicated ISAX calls, such as MulShl4 in Figure 5a. Beyond this, the
compiler further analyzes loop regions, identifying arrays v and M
as inputs and C as the output, and uses profiled input-output data to
verify functional equivalence with the custom GEMV ISAX. Upon a
successful match, the compiler rewrites the loop to directly invoke
the GEMV intrinsic, replacing the original computation.

By employing the pattern-matching engine, APSC effectively han-

5
Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Bitwidth-Aware Vectorization
Input: LLVM IR function F , custom ISAX information C
Output: Vectorized function F ′

1 for each region R in F do
2 seeds← DetectSeeds(R, C);
3 if CanVectorize(seeds, C) then
4 vecIntrinsic← Pack(seeds);
5 if not BitwidthFits(seeds) then
6 config ← GenConfig(excess inputs);
7 Insert config before seeds;
8 end
9 Replace seeds with vecIntrinsic;

10 end
11 end
12 return F ′

dles both control-free instruction sequences and complex control-
flow regions, eliminating the need for manual intrinsic insertion for
scalable adoption of ISAXs.

C. Bitwidth-Aware Vectorization

The APSC compiler infrastructure enables ISAX-specific compiler
optimizations. Here we present bitwidth-aware vectorization, which
enables the simultaneous execution of multiple data operations,
significantly boosting computational throughput. While traditional
vectorization techniques [20], [24] are effective for standard element
width, they overlook the subword-level register-bitwidth utilization
problem, which is especially obvious for ISAX scenarios. Consider
the BitNet [19] dot product shown in Figure 5c, which computes
an 8-element dot product with 8-bit activations and 2-bit weights.
Each invocation occupies only 10 bits within a 32-bit register,
resulting in the underutilized register bitwidth. To improve utilization,
APSC detects a corresponding custom ISAX DotprodW2A8x4 and
packs four consecutive activations and weights into two operands,
enhancing register bitwidth usage. Furthermore, when the packed
bitwidth surpasses the architectural limit, e.g., at most two 32-bit
operands and one 32-bit result for an R-Type ISAX, APSC needs to
insert auxiliary memory operations to accommodate the overflow data
automatically.

To systematically harness these optimization opportunities under
bitwidth constraints, APSC analyzes the program to identify scalar
custom ISAXs that can be promoted to existing SIMD-style vectorized
forms. Algorithm 1 outlines the algorithm in detail. It begins by
iterating over all regions in the function F . For each region, it applies
DetectSeeds (line 2) to detect a set of individual calls to scalar
ISAXs that can potentially be replaced with a SIMD ISAX, referred
to as seeds. Next, the algorithm checks whether the selected seeds
can be co-scheduled without introducing dependencies (line 3). If so,
the inputs are bit-level concatenated via the Pack (line 4) function,
which inserts necessary operations on the input values in the general
program to prepare packed operands for the ISAXs. Subsequently,
BitwidthFits (line 5) checks whether the packed total bitwidths fit
within architectural constraints. For the case that the total bitwidth
exceeds the register bandwidth, Algorithm 1 calls GenConfig (line 6)
to allocate stack memory for the overflow variables and construct a
config ISAX, which is an auxiliary ISAX preparing the initial values
of the target ISAX’s static registers from the given memory address
range. The call to the config ISAX is inserted before the seeds as a
preprocessing step of the vectorized ISAX execution (line 7). Finally,
the identified seeds are replaced with the vectorized ISAX (line 9),
improving performance without violating the original functionality.
Overall, APSC balances register constraints and performance by

General:

 cadl: "bf_p2.cadl"

 c_file: "ntt.c"

 platform: "rocket"

APS-Synth

APSC

ASIC Flow

Cycle-accurate
Simulator

semantics
(JSON)

Design.def

ISAX Behavior (SIR)
Schedule Report (SSIR)

Instruction Trace
Performance Metrics

Matching Report
Vectorization Strategy

Optimization Parameters

App.elf

Hardware Metrics
PPA Report

Overhead Evaluation

Task: synth

Task: compile

Task: asic

Task: sim

out/App.elf

out/Design.def

report/sim

report/asicreport/synth

report/compile

ISAX.cadl
App.c

Config.yml

Synth:

 period: 10.0

...

Fig. 6: APS framework workflow

consolidating low-bitwidth operands and introducing auxiliary config
ISAXs for overflow handling, thus enhancing bitwidth utilization and
execution efficiency.

VI. EXPERIMENT EVALUATION

In this section, we describe the toolchain workflow of APS and
evaluate it by three case studies across different application domains,
including post-quantum cryptography, machine learning, and digital
signal processing.

A. Tool Demonstration

As shown in Figure 6, the workflow starts with a CADL design,
C-based application source code, and a configuration file (YAML),
which allows users to specify custom instructions, design constraints,
and target hardware platforms. APS users can either run modular
tasks for individual hardware/software design processes or run a
single build-all command to trigger the end-to-end design flow.
Specifically, the synth task launches APS-Synth, which synthesizes
the CADL into SystemVerilog implementation at the given timing
constraints, while exporting CADL into JSON-formatted semantics
for the compiler infrastructure to use. A schedule report is gen-
erated, enabling designers to analyze pipeline timing, latency, and
design trade-offs. The SoC is then automatically assembled using
the respective SoC generator. The compile task invokes APSC to
compile the user’s C program, perform ISAX matching according to
its semantics, and apply optimizations like vectorization. A concise
report summarizes matching details, vectorization patterns, and in-
serted memory operations, allowing designers to trace how ISAXs
are adopted in their source code.

For evaluation, the sim task runs a cycle-accurate RTL simulator
for both baseline binary without triggering any ISAX units and binary
compiled by APSC to exploit ISAXs, validating correctness and
reporting performance gains. Detailed performance metrics, includ-
ing cycle counts, instruction numbers, and CPI, are automatically
recorded, allowing developers to identify bottlenecks and quantify
the performance impact of their ISAX design. When the design
meets users’ performance expectation, the asic tasks can be used
to launch the ASIC backend flow, generating the final layout and

6
Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

reporting power, performance, and area metrics. These results are
then compared with baseline processors to quantify the benefits and
the overhead introduced by ISAXs. This analysis enables developers
to evaluate trade-offs and improve their CADL design to achieve a
better balance between performance gains and hardware overheads.

In summary, APS delivers an automated flow from CADL and
application program to ISAX hardware synthesis, software integration,
performance evaluation, and ASIC implementation. Each design task
provides key artifacts and reports, enabling rapid feedback during the
agile development of specialized ISAXs.

B. Evaluation Setup

In our evaluation, cycle information is collected by cycle-accurate
hardware simulation using Verilator v5.034 [27], using testbenches
provided by Chipyard [4] and Croc [25]. Physical implementation
metrics are derived through complete ASIC logic synthesis and
physical placement, using Yosys 0.50 [29] and OpenROAD v2.0-
16235 [3], respectively. We update original flow scripts to match
our customized RTL design, including resizing chip area, inserting
SRAM macros, and porting to the sg13g2 process. These ASIC
evaluations are conducted at the SoC level, including instruction
and data caches. For the compiler infrastructure, we use LLVM-
18.0.1 [18] to implement our algorithms. We evaluate two baseline
SoCs, both running general C programs without any ISAXs. The
first is a Rocket tile featuring a Rocket core with a 16kB and 4KB
direct-mapped instruction and data caches, respectively. Our ASIC
flow yields a physical design operating at 160.7MHz with a total
area of 1.35mm2. The second is the Croc system, which integrates a
CV32E40X core with 8KB and 4KB 2-way set-associative instruction
and data caches, respectively. Its physical implementation achieves a
frequency of 69.2MHz and occupies 5.74mm2.

C. Accelerating Post-Quantum Cryptography Workloads

CRYSTALS-KYBER [8] has been standardized as the key encap-
sulation mechanism (KEM) in the domain of Post-Quantum Cryp-
tography (PQC). CRYSTALS-KYBER is defined over the polynomial
ring Zq[x]/⟨xN +1⟩, where N=256 and q=3329, and the polynomial
multiplication is its computational bottleneck. Number Theoretic
Transform (NTT) [2] is widely adopted to accelerate CRYSTALS-
KYBER. The O(n2) complexity of the large-degree polynomial
multiplication on the ring is significantly reduced to O(nlogn) of
point-wise multiplication (PWM) in the NTT domain. However, NTT
and PWM still suffer from long latency due to the butterfly kernel
and the 1-degree polynomial multiplication. They occupy 76% and
90% of the execution latency, respectively. The butterfly kernel in
NTT is defined as:

f ′
j+len ←

(
fj − fj+len · ζi

) (
mod q

)
,

f ′
j ←

(
fj + fj+len · ζi

) (
mod q

)
.

where ζi is the precomputed rotation factor. The computation of
degree-1 polynomial multiplication in PWM is given by:

h2i ←
(
f2ig2i + ζ2i+1 f2i+1g2i+1

)(
mod q

)
,

h2i+1 ←
(
f2ig2i+1 + f2i+1g2i

)(
mod q

)
.

Implementation: To reduce the overall latency of NTT and PWM,
we implement two butterfly ISAXs, the scalar version Butterfly and
the 2-way parallel version Butterflyx2, and a Karatsuba ISAX for
fast polynomial multiplication. The ISAXs are described with only
175 SLOC in CADL. APSC automatically utilizes the ISAXs in the
original program via pattern matching.

TABLE II: Evaluation results of NTT and PWM ISAXs

Workload ISAX Croc Rocket Tile
#Cycles Speedup #Cycles Speedup

NTT

- 76,955 - 112,328 -
Butterfly 23,052 3.34× 21,796 5.15×
Butterflyx2 12,323 6.24× 11,053 10.16×

Area Freq. Area Freq.
Butterfly +5.44% -0.35% +17.67% -2.58%
Butterflyx2 +5.02% -6.92% +20.00% -7.57%

#Cycles Speedup #Cycles Speedup

PWM

- 38,677 - 56,842 -
Karatsuba 3,808 10.16× 3,793 14.99×

Area Freq. Area Freq.
Karatsuba +5.37% -0.35% +19.37% -4.83%

Results: Table II shows the latency and speedup of NTT and PWM
implemented with ISAXs in APS. The Butterfly ISAX achieves 3.34×
and 5.15× speedup on the targeted two platforms, as the ISAXs adopts
the efficient Barrett modular multiplication [7] and the datapath
is fully-pipelined by APS-Synth. APSC automates vectorization for
the Butterfly ISAX but only achieves 3.88× speedup on the Rocket
tile, which is even worse than the scalar version. This performance
degradation is primarily caused by additional memory access latency
introduced by Config calls inserted during automated vectorization.
To address this, we manually inserted Butterflyx2 ISAX to implement
more compact 2-paralleled vectorization. Butterflyx2 yields speedups
of up to 6.24× and 10.16× on the two platforms, nearly doubling the
gains over the Butterfly ISAX. The Karatsuba ISAX achieves 10.16×
and 14.99× speedup over the PWM baseline, which is attributed to
the customised fast multiplication datapath described in CADL and
synthesised in APS. The ASIC flow analysis reveals that the Butterfly
ISAX and the Butterflyx2 ISAX lead to 5.44% and 5.02% more area on
the Croc platform, respectively, while causing a frequency decrease
by 0.35% and 6.92%. On the Rocket tile, the area overheads rise to
17.67% and 20.00%. These higher overheads are attributed to two
factors: the base area of the Rocket tile is smaller than that of the
Croc, and the Rocket tile has a higher frequency target, which requires
more pipeline stages of the ISAX implementation, leading to more
area overheads. For frequency, the Butterfly and the Butterflyx2 ISAX
decrease the Rocket tile frequency by 2.58% and 7.57%, respectively.
The Karatsuba ISAX incurs area overheads of 5.37% and 19.37%, and
0.35% and 4.83% frequency degradation. Both the area and frequency
overheads are attributed to hardware multipliers.

D. Accelerating Quantized Large Language Model Workloads

1-bit Large Language Models (LLMs) represent a recent advance-
ment in AI that focuses on extreme efficiency, where at most two
bits are used to represent each weight in the model, as opposed to
the standard 16-bit or 32-bit floating-point numbers. A prominent
example of 1-bit LLMs is Microsoft’s BitNet b1.58 [19], which
uses ternary representation for each weight: {-1, 0, +1}. Despite the
promising efficiency gains of 1-bit LLMs, their practical performance
benefits are currently constrained by the lack of specialized compu-
tational units on general-purpose processors for operations involving
quantized parameters. For instance, the dot product operation of
8-bit inputs and 2-bit weights typically relies on inefficient 8-bit
multiplications or look-up table (LUT) methods.

Implementation: In APS, we design the dot product of 8-bit
inputs and 2-bit weights as a SIMD ISAX, named dotprodW2A8x4,
which is the core computation within BitNet’s BitLinear layers [19].

7
Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Evaluation results of 1-bit LLM ISAX

Workload ISAX Croc Rocket Tile
#Cycles Speedup #Cycles Speedup

DotProd
- 35,146 - 12,014 -
dotprodW2A8x4 14,006 2.51× 2,461 4.88×

BitLinear
- 789,966 - 336,531 -
dotprodW2A8x4 388,586 2.03× 146,939 2.29×

BitNet
- ≈3.48e10 - ≈3.48e10 -
dotprodW2A8x4 ≈2.19e10 1.59× ≈2.05e10 1.70×

Area Freq. Area Freq.
dotprodW2A8x4 +1.19% -2.36% +3.36% +1.30%

(a) SOS

(c) DPLL

(b) IIR

OutIn

Phase
Detector

Loop Filter
(Impl. in IIR)

Digi. Ctrl.
Oscillator

SOS
[0]

SOS
[2]

SOS
[1]

In Out

z-1

z-1

z-1

z-1

In Out

Fig. 7: Structure of Digital Phase-Locked Loop (DPLL): (a) A SOS
block as the building unit of the filter; (b) An IIR filter composed of
cascaded SOS blocks; (c) A DPLL incorporating the IIR filter.

Specifically, this instruction computes the dot product of four 8-bit
inputs packed into a word and four 2-bit weights packed into a byte,
which is supported by APSC through the generated pattern matcher
and the bitwidth-aware vectorization pass.

Results: Table III shows the evaluation results of the proposed
ISAX for 1-bit LLMs. We evaluate the standalone dot product and
the BitLinear layer on two platforms: Croc and Rocket tile. For a
single dot-product kernel, the ISAX achieves a speedup of 2.51× and
4.88× over the baseline on Croc and Rocket tile, respectively. For a
complete BitLinear layer, the ISAX achieves 2.03× and 2.29× speedup
on the two platforms. In this case study, APSC can automatically
utilize the proposed ISAX in the C implementation of BitLinear
using the profile-based pattern match engine, thereby achieving
acceleration with minimal hardware-software design efforts. The
ASIC flow reports that the dotprodW2A8x4 ISAX leads to 1.19% and
3.36% more area on the two platforms, respectively, while causing
a frequency decrease by 2.36% and an increase by 1.30%. These
results demonstrate that the hardware overhead of the ISAX is fully
acceptable in practice. Furthermore, we estimate the speedup potential
of the proposed ISAX on the complete BitNet model. Profiling the
BitNet-b1.58-2B-4T configuration reveals that the BitLinear layers
account for approximately 73% of the total inference time. Based on
this observation, we project that the end-to-end BitNet inference can
be accelerated by 1.59x and 1.70x on the two platforms, respectively.

E. Accelerating Digital Signal Processing Workloads

IIR (Infinite Impulse Response) filters are widely employed in
digital signal processing for their computational efficiency and com-
pact implementation. Higher-order IIR filters are typically decom-
posed into cascades of second-order sections (SOS), which enhance
numerical stability and simplify fixed-point implementations. Our
implementation builds upon the open-source liquid-dsp [15] library.

Implementation: We first design an SOS ISAX to accelerate a
single SOS stage of the IIR filter. This ISAX operates on 16-
bit fixed-point input samples, updates the internal filter state using
customized registers, and eliminates repeated memory accesses per

TABLE IV: Evaluation results of SOS/IIR ISAXs

Workload ISAX Croc Rocket Tile
#Cycles Speedup #Cycles Speedup

DPLL

- 15599 - 21706 -
SOS 7048 2.21× 6923 3.14×
IIR 2829 5.51× 3598 6.03×

Area Freq. Area Freq.
SOS +9.87% -2.75% +44.10% -6.77%
IIR +9.89% +1.98% +44.62% -3.92%

stage. However, executing multiple SOS stages by calling the SOS
ISAX multiple times still incurs software control overheads. Thereby,
we introduce a second ISAX, named IIR, that processes an entire SOS
cascade in a pipelined manner. The IIR ISAX supports up to four
SOS stages and leverages zero-overhead hardware loop to maximize
throughput. The SOS ISAX optimizes latency by avoiding redundant
loads and stores, and the IIR ISAX further enhances throughput by
eliminating software loop control and redundant ISAX calling. We
evaluate the implementation using a digital phase-locked loop (DPLL)
as a representative workload (see Figure 7), where the IIR filter acts
as a loop filter.

Results: Table IV presents the cycle-accurate latency and the
speedup over the software baseline. On Croc, the SOS ISAX achieves
a 2.21× speedup, while the IIR ISAX shows even greater performance
with a 5.51× speedup. On Rocket tile, their speedups are 2.78× and
5.18×, respectively, presenting consistent gains across architectures.
These results demonstrate that the APS ISAXs substantially improves
the throughput of the DSP application. When comparing the per-
formance gains of the SOS ISAX and the IIR ISAX, the IIR ISAX
achieves 2.49× higher throughput than SOS on Croc and 1.92× on
Rocket tile, showing more performance improvement. The reason
is that APS-Synth effectively schedules the arithmetic operations in
the chained IIR ISAX behavior, synthesizing a deep pipeline and the
hardware loop logic, which eliminates the software ISAX calling and
loop overhead of the SOS ISAX. The area overhead results present
platform-dependent characteristics. While both ISAX implementations
show an area increase of less than 9.9% on Croc, they rise to over
44% on Rocket tile. The reasons for the huge area overhead disparity
are explained in subsection VI-C. For frequency, SOS ISAX causes
a 2.75% decrease on Croc and 6.77% on Rocket tile, while the IIR
ISAX even improves frequency by 1.98% on Croc and incurs only
3.92% reduction on Rocket tile.

VII. CONCLUSION

APS provides an open-source hardware-software co-design frame-
work that streamlines the development of domain-specific processors.
It aligns heterogeneous processor architectures through a unified ISAX
interface abstraction, introduces a ISAX-specific synthesis flow for
the cross-level architectural description language, and provides the
compiler infrastructure that automates pattern matching and bitwidth-
aware vectorization. Case studies across three application domains,
including post-quantum cryptography, machine learning, and digital
signal processing, comprehensively demonstrate APS’s acceleration
capabilities and productivity in practice. The integrated APS frame-
work establishes the foundation and provides convenience for future
research on RISC-V ISAX design and compiler optimization.

ACKNOWLEDGMENT

This work was supported in part by the National Science Founda-
tion of China (Grant No. T2325001).

8
Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “The openhw group core-v-xif interface.” [Online]. Available: https:
//docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/

[2] R. C. Agarwal and C. S. Burrus, “Number theoretic transforms to
implement fast digital convolution,” Proceedings of the IEEE, vol. 63,
no. 4, pp. 550–560, 2005.

[3] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz,
L. Wang, Z. Wang, M. Woo, and B. Xu, “Toward an Open-Source Digital
Flow: First Learnings from the OpenROAD Project,” in Proceedings of
the 56th Annual Design Automation Conference 2019, Jun. 2019.

[4] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt,
J. Wright, J. Zhao, Y. S. Shao, K. Asanović, and B. Nikolić, “Chipyard:
Integrated design, simulation, and implementation framework for custom
socs,” IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

[5] G. Armeniakos, A. Maras, S. Xydis, and D. Soudris, “Mixed-precision
Neural Networks on RISC-V Cores: ISA extensions for Multi-Pumped
Soft SIMD Operations,” in Proceedings of the 43rd IEEE/ACM Interna-
tional Conference on Computer-Aided Design, Apr. 2025.

[6] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, vol. 4, pp. 6–2, 2016.

[7] P. Barrett, “Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor,” in Conference
on the Theory and Application of Cryptographic Techniques. Springer,
1986, pp. 311–323.

[8] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehle, “ CRYSTALS -
Kyber: A CCA-Secure Module-Lattice-Based KEM ,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). Los
Alamitos, CA, USA: IEEE Computer Society, Apr. 2018, pp. 353–367.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/EuroSP.
2018.00032

[9] Cadence Design Systems, Inc, “Cadence Tensilica Of-
ferings,” publication Title: Cadence Tensilica Offerings.
[Online]. Available: https://www.cadence.com/en US/home/tools/
silicon-solutions/compute-ip/technologies.html

[10] H. Cheng, G. Fotiadis, J. Großschädl, D. Page, T. H. Pham, and
P. Y. A. Ryan, “RISC-V Instruction Set Extensions for Multi-Precision
Integer Arithmetic: A Case Study on Post-Quantum Key Exchange Using
CSIDH-512,” in Proceedings of the 61st ACM/IEEE Design Automation
Conference, Jun. 2024.

[11] CIRCT community, “CIRCT,” 2025. [Online]. Available: https:
//circt.llvm.org/

[12] Codasip, “Codasip Studio,” publication Title: Codasip. [Online].
Available: https://codasip.com/products/codasip-studio/

[13] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on SDC formulation,” in Proceedings of the 43rd annual
Design Automation Conference, ser. DAC ’06. New York, NY, USA:
Association for Computing Machinery, 2006, pp. 433–438. [Online].
Available: https://dl.acm.org/doi/10.1145/1146909.1147025

[14] F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito,
M. Lattuada, M. Minutoli, C. Pilato, and A. Tumeo, “Invited: Bambu:
An Open-Source Research Framework for the High-Level Synthesis of
Complex Applications,” in Proceedings of the 58th Annual ACM/IEEE
Design Automation Conference. IEEE Press, 2022, pp. 1327–1330.
[Online]. Available: https://doi.org/10.1109/DAC18074.2021.9586110

[15] J. D. Gaeddert et al., “liquid-dsp.” [Online]. Available: https:
//github.com/jgaeddert/liquid-dsp

[16] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-Threshold RISC-V
Core With DSP Extensions for Scalable IoT Endpoint Devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Oct. 2017.

[17] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is firrtl
ground: hardware construction languages, compiler frameworks, and
transformations,” in Proceedings of the 36th International Conference
on Computer-Aided Design, ser. ICCAD ’17. IEEE Press, 2017, p.
209–216.

[18] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, ser. CGO ’04. USA: IEEE Computer
Society, 2004, p. 75.

[19] S. Ma, H. Wang, S. Huang, X. Zhang, Y. Hu, T. Song, Y. Xia, and
F. Wei, “Bitnet b1.58 2b4t technical report,” 2025. [Online]. Available:
https://arxiv.org/abs/2504.12285

[20] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved
data for simd,” in Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
132–143. [Online]. Available: https://doi.org/10.1145/1133981.1133997

[21] J. Oppermann, B. M. Damian-Kosterhon, F. Meisel, T. Mürmann,
E. Jentzsch, and A. Koch, “Longnail: High-level synthesis of
portable custom instruction set extensions for RISC-v processors from
descriptions in the open-source CoreDSL language,” in Proceedings of
the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3. ACM,
2024, pp. 591–606. [Online]. Available: https://dl.acm.org/doi/10.1145/
3620666.3651375

[22] W. Peng, Y. Xiao, Y. Zou, Z. Luo, and Y. Liang, “Clay: High-level asip
framework for flexible microarchitecture-aware instruction customiza-
tion,” in Proceedings of the 44st IEEE/ACM International Conference
on Computer-Aided Design, ser. ICCAD ’25, 2025.

[23] P. platform, “Pulp platform: Open hardware, the way it should be!”
2025. [Online]. Available: https://pulp-platform.org/index.html

[24] I. Rosen, D. Nuzman, and A. Zaks, “Loop-aware slp in gcc,” pp. 131–
142, 01 2007.

[25] P. Sauter, T. Benz, P. Scheffler, H. Pochert, L. Wüthrich, M. Povišer,
B. Muheim, F. K. Gürkaynak, and L. Benini, “Croc: An end-to-end
open-source extensible risc-v mcu platform to democratize silicon,”
2025. [Online]. Available: https://arxiv.org/abs/2502.05090

[26] P. D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand,
and L. Benini, “Slow and steady wins the race? a comparison of ultra-
low-power risc-v cores for internet-of-things applications,” in 2017 27th
International Symposium on Power and Timing Modeling, Optimization
and Simulation (PATMOS). IEEE, 2017, pp. 1–8.

[27] W. Snyder, P. Wasson, D. Galbi, and et al, “Verilator.” [Online].
Available: https://github.com/verilator/verilator

[28] Synopsys, Inc, “Synopsys ASIP Designer,” publication Title: Synopsys
ASIP Designer. [Online]. Available: https://www.synopsys.com/dw/
ipdir.php?ds=asip-designer

[29] C. Wolf, “Yosys open synthesis suite,” 2016. [Online]. Available:
https://yosyshq.net/yosys/

[30] Y. Xiao, Z. Luo, and Y. Liang, “cmt2: Rule-Based Hardware Description
in Rust with Temporal Semantics,” in 5th Workshop on Languages, Tools,
and Techniques for Accelerator Design (LATTE’25), 2025.

[31] Y. Xiao, Z. Luo, K. Zhou, and Y. Liang, “Cement: Streamlining
fpga hardware design with cycle-deterministic ehdl and synthesis,”
in Proceedings of the 2024 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, ser. FPGA ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 211–222.
[Online]. Available: https://doi.org/10.1145/3626202.3637561

[32] R. Xu, Y. Xiao, J. Luo, and Y. Liang, “Hector: A multi-level
intermediate representation for hardware synthesis methodologies,”
in Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design, ser. ICCAD ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3508352.3549370

[33] F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-
v core in 22-nm fdsoi technology,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640, Nov
2019.

[34] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in 2013 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Nov. 2013, pp. 211–218, iSSN: 1558-2434.
[Online]. Available: https://ieeexplore.ieee.org/document/6691121

[35] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” May 2020.

9
Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:43:17 UTC from IEEE Xplore. Restrictions apply.

