2025 62nd ACM/IEEE Design Automation Conference (DAC) | 979-8-3315-0304-8/25/$31.00 ©2025 IEEE | DOI: 10.1109/DAC63849.2025.11132875

Cayman: Custom Accelerator Generation with
Control Flow and Data Access Optimization

Youwei Xiaof, Fan Cuif, Zizhang Luof, Weijie Pengf, and Yun Liang*T
tSchool of Integrated Circuits, Peking University,* Institute of Electronic Design Automation, Peking University
shallwe @pku.edu.cn, pku_cf@stu.pku.edu.cn, {semiwaker, weijiepeng, ericlyun}@pku.edu.cn

Abstract—Custom accelerators enhance System-on-Chips’ per-
formance through hardware specialization. High-level synthesis
(HLS) can automatically synthesize accelerators for given kernels
but requires manual selection and extraction of kernels from
applications. This paper proposes Cayman, the first end-to-end
framework to synthesize high-performance custom accelerators
with both control flow and data access optimization. Cayman
automatically selects kernels for hardware acceleration based on
a hierarchical program representation, which captures kernel
candidates with general control flows. Besides, Cayman optimizes
accelerators with specialized processor-accelerator interfaces for
data access acceleration. Cayman further introduces a novel accel-
erator merging mechanism to synthesize reusable accelerators.
Experiments on various benchmarks demonstrate that Cayman
outperforms two state-of-the-art frameworks by 8.0x and 14.4x.

I. INTRODUCTION

Integrating accelerators has emerged as a critical strategy for
augmenting the performance of modern applications. Special-
ized tasks are offloaded from the CPU core to accelerators
for faster execution. Customizing accelerators encompasses
two principal processes: candidate selection decides on the
offloaded programs regions for acceleration, and hardware
design implements the hardware accelerator. Manual acceler-
ator design [8] is inefficient owing to the inherent complexity
of applications and the intricacy of hardware design. Candi-
date selection frameworks [29], [30] only explore candidate
regions based on accelerator models without synthesizing
hardware. High-level synthesis (HLS) tools [11], [15], [25],
[26] can synthesize accelerator hardware design from software
descriptions. Accelerators’ performance, power, and area can
be further optimized via design space exploration [20], [27],
[28]. However, HLS frameworks rely on designers to manually
select the candidate for acceleration, which is time-consuming
and often leads to sub-optimal solutions for a complex appli-
cation.

Prior works attempted to develop an end-to-end flow to
synthesize custom accelerators. However, they have severe
limitations: they either exclude control flow and data access
from accelerated kernels or only synthesize sequential and un-
optimized implementation, inhibiting performance improve-
ment. Specifically, custom functional unit synthesis frame-
works [2], [5], [6], [10], [16], [19], [21] only accelerate data-
flow graphs (DFGs) from target application programs. In other
words, they do not accelerate code regions including any con-
trol flow or data access to memory. Off-core accelerator syn-
thesis frameworks [4], [22], [23], [31] synthesize accelerators

*
Corresponding author

with control flow and memory access support. However, they
solely synthesize sequential control flow implementation and
adopt slow processor-accelerator interfaces for data access. As
a result, they fail to achieve satisfying performance speedup.

This paper proposes Cayman, the first end-to-end frame-
work that synthesizes high-performance custom accelerators
with full control flow and data access support. Cayman au-
tomates both candidate selection and hardware synthesis.
Specifically, Cayman selects kernels to synthesize based on
the whole-application program structure tree (wWPST) repre-
sentation, which captures program regions of rich control
flows for hardware acceleration. Cayman introduces a dy-
namic programming-based algorithm with heuristic pruning
and solution filtering for efficient and comprehensive selection
exploration. To synthesize high-performance accelerators for
selected kernels, Cayman proposes an accelerator model that
considers specialized processor-accelerator data access inter-
faces: coupled, decoupled, and scratchpad. The model effi-
ciently generates accelerator configurations comprising control
flow optimization and data access interface application and
conducts performance and area estimation. Moreover, Cayman
proposes a novel accelerator merging mechanism that shares
reconfigurable datapath units within a reusable accelerator to
accelerate multiple program regions even with diverse control
flows, effectively reducing area overhead.

In summary, this paper makes the following contributions:

« We introduce Cayman, an end-to-end framework to synthe-
size high-performance custom accelerator automatically.

« We propose a dynamic programming-based candidate selec-
tion algorithm with heuristic pruning, modeling processor-
accelerator data access interfaces and control flows.

e« We propose a novel accelerator merging mechanism to
synthesize reusable accelerators.

For evaluation, we compare Cayman with two state-of-the-
art custom accelerator synthesis frameworks on various appli-
cations. Experimental results show that Cayman outperforms
NOVIA [21] and QsCores [23] by 14.4x and 8.0x with the
same total area budget for the synthesized accelerators.

II. BACKGROUND AND RELATED WORK

A. High-level Synthesis

High-level synthesis (HLS) [9] can synthesize hardware ac-
celerators from software kernels. With a specified target clock
period, HLS tools [15], [25], [26] schedule the operations to

Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:42:16 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison between prior works and Cayman.

design candidate | control data hardware
Methods . .
entry selection flow access sharing
HLS! kernel manual | optimized | specified /
CFU? | application auto / scalar-only | restricted
OCA? | application auto sequential slow restricted

[Cayman [application [auto [optimized [specialized [flexible]
" [3], [11]-[13], [15], [17], [18], [24]-[26]; * (2], [5], [6], [10], [19], [21];
[4], [22], [23], [31]
cycles within the kernel, subsequently crafting the accelerator
design based on the scheduling outcome. HLS tools support
various optimization techniques, such as loop pipelining and
unrolling, which may transform the kernel’s source code or di-
rect the scheduler to refine the control logic of the accelerator,
thereby enhancing performance. DSE frameworks [20], [27],
[28] are proposed to explore the optimizations automatically.

Limitations: As shown in Table I, HLS tools’ design entry
is software kernels, requiring designers to extract and spec-
ify manually, rather than selecting them from applications
automatically. As a result, HLS requires significant human
interaction. The same problem applies to ASSIST [17], Long-
nail [18], and Bluespec Accelerate-HLS [3], all of which adopt
HLS but require manual candidate selection. Besides, design-
ers must choose data access interfaces for external memory
operations in kernels, which impact scheduling and overall
performance but are overlooked by existing DSE frameworks.

B. Prior Works on Custom Accelerator Synthesis

Based on the types of synthesized accelerators, we segregate
prior custom acceleration synthesis works into two classes:
custom functional unit (CFU) synthesis frameworks [2], [5],
[6], [10], [19], [21] and off-core accelerator (OCA) synthesis
frameworks [4], [22], [23], [31].

Limitations: As shown in Table I, CFU synthesis frameworks
select candidates exclusively in the DFG form, precluding
control flows. Their data access interfaces only take scalar
operands and return results since they do not support other
memory accesses. OCA synthesis frameworks support control
flow and memory access. However, they only implement
sequential control logic and show data access interfaces, such
as the scan-chain interface characterized by high latency
and low bandwidth in [22], [23], significantly circumscribing
performance gains. For hardware sharing, some CFU synthesis
frameworks [5], [21] merge candidates into a reusable CFU,
while some OCA frameworks [4], [23] endorse sharing solely
among almost identical loops or functions. In other words,
they support restricted hardware sharing and cannot reuse one
accelerator to accelerate multiple kernels with diverse control
flows, missing area-saving opportunities.

III. METHODOLOGY

A. Overview

As overviewed in Fig. 1, Cayman ingests target applica-
tion programs as input and automatically identifies the high-
performance solutions, each comprising multiple accelerators.
The framework compiles programs into LLVM IR and builds

[Application|» LLVMIR |

/proﬁle/analyze/ /build/

| Whole-Application |
Program Structure Tree

candidate selection [

v
Solutions|-»Hardware|

Fig. 1: Overview of the Cayman framework

void func@(args) {
linear: -entr region
for (int i=0; i<N; i++) —y func1

y[i] = k*x[i]+b; | tai
} > headuuter contain
void funcl(args) { v] region
outer: dot-prod loop outer
for (int i=0; i<N; i++) { P 4
dot_product: + contain
for (int j=0; j<M;j ++) cond,y ey

z[i] += A[il[j1*B[i1[3j] .

- region

) ot |

(a) Program

(b) Regions of funci

(@ profiling: #count, duration

2| | loop @ dependency: stz—»ld z
=114 g , i
5| linear i outer '@ access information: '
= 1003 Tor 2 ' stream? | footprint

< ' H
o ' 1

[ctri-flow = product |13 {dA1dB| yes M

Cbb dot-prod dzstz| yes 1
(c) wPST (d) Profiling and Analysis

Fig. 2: Example

the whole-application program structure tree (wPST) represen-
tation. The framework also runs profiling and program analysis
through LLVM passes. The framework then leverages the
profiling and analysis outcomes to conduct candidate selection
on the wPST and produces solutions comprising selected
kernels and accelerator configurations.

B. Representation, Profiling, and Analysis

Cayman introduces the whole-application program structure
tree (WPST) representation for candidate selection. Traditional
program structure tree (PST) [14] identifies single-entry-
single-exit (SESE) regions inside a function as vertices and
represents the containing relationships between regions as
edges. The wPST extends PST with a root vertex representing
the entire application and multiple function vertices represent-
ing every included function. We consider only SESE regions
as legal acceleration candidates because the SESE property is
necessary to guarantee that the candidate’s execution can be
completely isolated from the main processor through offload-
ing and synchronization at their entry and exit points, respec-
tively. The wPST captures all feasible acceleration candidates
as its region vertices in a target application. Specifically, the

Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:42:16 UTC from IEEE Xplore. Restrictions apply.

coupled decoupled scratchpad
Accelerator Accelerator Accelerator
scrachpad
yr " N
Arbiter+XBar Arbiter+XBar DMA

‘ Processor D-Cache/Memory Interface ‘

Fig. 3: CPU-accelerator data communication interfaces

wPST represents two region types: bb regions, corresponding
to basic blocks, and ctrl-flow regions, corresponding to general
control flow including loops and conditionals.

Cayman profiles application execution information including
duration and execution count for every program region. The
profiling results are essential for locating hotspot kernels
and estimating performance gains. Besides, Cayman conducts
program analysis to collect data access information, including
memory dependencies, memory access patterns, and access
footprints. Specifically, Cayman identifies loop-carried depen-
dencies for every loop region, identifies stream access patterns
whose access address sequence can be statically computed,
and analyzes the access address range for every memory op-
eration. The data access information is crucial for accelerator
configuration decisions, including control flow optimizations
and data access interface selections.

The program in Fig. 2a contains two functions, and Fig. 2¢
presents the corresponding wPST, showcasing ctrl-flow and
bb regions as candidates for acceleration. Specifically, Fig. 2b
shows the control-flow graph (CFG) of func1 and illustrates
three regions comprising control flows. Fig. 2d presents pro-
filing (1) and analysis @@ results for the ”loop dot-product”
region. It includes one loop-carried dependency between the
store and load operations to/from z[i]. Besides, all access
operations have the stream access pattern, while 1d A and 1d
B have the access footprint of M according to the induction
variable j and 1d z and st z have the access footprint of 1
due to the invariant i in the loop.

C. Accelerator Modeling

Data access interfaces between the processor and accelera-
tors have nonnegligible impacts on the performance and area
usage of the accelerators. However, it is overlooked by prior
exploration works. Cayman systematically models three types
of data access interfaces: coupled, decoupled, and scratchpad,
as shown in Fig. 3:

o Coupled interface uses load/store units for access. A load-
/store unit initiates data access to the memory system upon
receiving requests with a target address from the accelerator,
causing the accelerator to stall until the response arrives.

e Decoupled interface allocates dedicated address generation
units (AGUs) for load/store units. The AGUs compute access
addresses independently from the accelerator, which enables
load units to start data access earlier than the accelerator’s
requests and enables store units to send out data later, both
reducing the accelerator stall cycles. However, the decoupled

[dotprod: for (i=e;i<N;i++) sumt=x[il*y[il |

x[1,y[]: coupled x[1,y[]: decoupled
s CO C1 C2 C3 C4 C5C6 C7 C8 C9 CioCiy Co C1 C2 C3C4C5C6 CT
£ 3=0] 1d mul add 6N [J=0|1d mul add 4N
2|31 1d mul add |J=1 1d mul add
[. .
8
% Co C1 C2C3C4C5C6C7C8 Co C1 C2 C3C4C5C6CT
"TE) j=0 1d mul add 3N+3 [j=0[1d mul add N+3
Ali= 1d mul add j=1 1d mul add
al.. .

x[1,y[]: coupled x[]1,y[]: scratchpad
= Co C1 C2 C3C4C5C6C7C8 Co C1 C2 C3 C4C5C6 CT.
Z|j=e| 1do mul add 9(N/2) |j=0/lde mul add 4(N/2)
= 1 1d1 mul add T1d1 mul add
3 .

Fig. 4: Impacts of data communication interfaces.

interfaces pay extra area overhead for AGUs and data buffer-
ing FIFOs, and are only applicable to stream-pattern accesses
for the requirements of independent address generation.

o Scratchpad interface reserves a dedicated buffer within the
accelerator to cache a memory range. Data synchronization
between the scratchpad and the memory system occurs before
and after accelerator execution through a direct memory access
(DMA) engine. It is beneficial when most positions in the
cached memory range are accessed multiple times. However,
the scratchpad interface incurs prominent area overhead for
the scratchpad buffer and the DMA engine and requires
statically analyzed footprints to determine the scratchpad size.

Fig. 4 exemplifies data access interfaces’ impacts on accel-
erator performance considering different control flow imple-
mentations. For sequential loop, the coupled interface leads to
latency of 6N cycles, where N is the tripcount of the loop.
The decoupled interface optimizes the latency to 4N cycles
since it reduces the stall cycles associated with the loads
by starting loads sooner before the accelerator requests. For
loop pipelining, the coupled interface gives a pipeline initial
interval (II) of 3 cycles, while the decoupled interface achieves
an II of 1 cycle. For loop unrolling with the factor 2, the
coupled interface leads to a latency of 9(N/2) cycles, and the
scratchpad interface optimizes the latency to 4(N/2) cycles
by enabling parallel access to the scratchpad without stalls.
Cayman considers interface specialization for different access
operations to achieve full data access acceleration.

Accelerator Configuration: Given the selected kernels for
acceleration, Cayman can synthesize multiple accelerator con-
figurations comprising control flow optimizations like loop
unrolling and pipelining and data access interface strategies
to achieve performance-area tradeoffs. Given the huge design
space, Cayman adopts a fast exploration strategy. Specifically,
it tries unrolling loops without loop-carried dependencies and
pipelining the innermost loops after unrolling. Subsequently,
Cayman determines data access interfaces heuristically for
memory access operations: use scratchpad interface for opera-
tions with the total access count [times larger than the access
footprint, indicating the necessity for caching; use decoupled
interface for operations inside pipelined loops to achieve ideal
II; and otherwise, use the coupled interface for area saving.
Memory partitioning is configured for scratchpad interfaces
inside unrolled loops to support parallel access. Consequently,

Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:42:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Candidate Selection

Data: wPST T, profiling/analysis results R
Result: Pareto-optimal selections
1 Function DP (vertex v):

for u € v.children do

DP(u);
Fv] «+ filter(F[v] ® Flu]);

if v is ctrl-flow then
1 LF[U] + filter(F[v] U pareto(accel(v,R)));

2 | if prune(v, R) then return ;

3 | if v is bb then

4 \ F[v] < filter(pareto(accel(v,R)));
5 | else

6 Flv] < 0;

7

8

9

—
>

12 DP(T.root);
13 return F[T.root];

Cayman efficiently generates candidate accelerator configura-
tions with optimized control flow and data access.

Performance and Area Estimation: Cayman’s accelerator
model estimates performance gains and area usage for selected
kernels with accelerator configurations without synthesizing
complete hardware. The estimation comprises three steps: (1)
apply loop unrolling to transform the kernels according to
the configuration; (2) only synthesize pipelined loop regions
P and sequential basic block regions B; and (3) estimate
accelerators’ latency and area through a bottom-up approach.
Specifically, Cayman considers diverse interface-specific laten-
cies and resource constraints when scheduling data access
operations during synthesis. For every region in P U B,
the cycle count is computed based on the scheduled latency
and profiled execution count, and the area is retrieved from
the synthesis report. For an outer region, the cycle count is
calculated by summing the cycle counts of its child regions,
and the area is estimated as the sum of its child regions’ area
plus extra control logic overhead. By doing so, the total cycle
count of the accelerators is efficiently estimated as Cycle qnq-
Given the profiled total duration of the accelerated kernels
Teand and the original execution duration of the entire program
Twu, the overall performance gain is estimated as

Speedup = Tall/(Tall — Teana + CyClecand/F> (1)
where F' is the target frequency of the synthesized accelerators.

D. Candidate Selection

Candidate selection determines a set of kernels corre-
sponding to non-overlapping wPST subtrees for hardware
acceleration to achieve the most performance gains under
specific area budgets. Cayman models candidate selection as
a knapsack problem: every wPST region, either ctrl-flow or
bb, corresponds to a knapsack item, and the performance gain
and area usage of the synthesized accelerator are the item’s
profit and weight, respectively. The knapsack problem has the
constraint: if a vertex is selected, all its descendants cannot be
selected, avoiding overlapping acceleration of kernels.

Cayman proposes a dynamic programming approach to solve
the knapsack problem, as shown in Algorithm 1. The function
DP(v) (line 1) solves the knapsack problem considering regions
contained in the wPST subtree rooted at the vertex v. The

function prune (line 2) terminates the search if the region v is
identified as not a hotspot worth acceleration according to the
profiling and analysis results R and a heuristic pruning strat-
egy. We define F'[v] as the area-performance Pareto-optimal
solution sequence accelerating kernels from v’s subtree. Every
solution ¢ € F[v] comprises one or more non-overlapping
kernels with accelerator configurations. Algorithm 1 builds
Fv] (line 3-11) according to the following recursion formula:

pareto(accel(v,R)) if v is bb
F[U] — {pareto(accel(v,R)U®ue“childmn Flu]) if v is ctrl-flow

pareto(Qy ey chitdren £ U
where accel calls Cayman’s accelerator model to generate
configurations for selected kernels, producing accelerators
with optimized control flow and data access and estimating
performance and area as discussed in Section III-C, and
pareto produces a Pareto-optimal sequence for the given
solutions. Specifically, there are three cases for F'[v]’s con-
struction according to the type of vertex v. If v is a bb
region, F'[v] gets accel(v, R) solutions accelerating v’s data-
flow subgraphs. If v is a ctri-flow region, either the region v
gets accelerated as an extracted kernel by a single accelerator,
corresponding to accel (v, R) solutions, or its descendant
regions get accelerated separately, applying the ® operation to
combine solutions from sibling subtrees rooted at v’s children:
Flu1] ® Flug)=pareto({¢1 Uy | ¢1 € Fluy], p2 € Flua]}).
Otherwise, v is the root vertex that cannot be selected directly,
and F[T.root] applies the ® operation to combine solutions
from different functions to form the overall selection solutions.

Algorithm 1 also features the filter function (line 4,9,11)
that filters out unnecessary solutions that are too close to
each other. Specifically, for a Pareto-optimal solution sequence
{-. . ¢i,Pit1,...,0j,...} with increasing area a; 41 > a;,
suppose ¢; is the first solution whose area a; is « times larger
than that of ¢;. That is, a; > «aa;, filter removes solutions
{pit1,...,0;—1} from the sequence. After filtering, every
neighboring solution pair (¢;, ¢;+1) satisfies that a;,11 > «a;.
For any knapsack with an area limit A, filter reduces the
maximum possible number of solutions from A to log, A,
greatly improving selection efficiency.

Algorithm Complexity: The complexity of Algorithm 1 is
O(N log? A+ E), where N denotes the number of unpruned
vertices in the wPST, A denotes the discretized area limit, and
E denotes the total time complexity of the accelerator model.
The term N logi A arises from F'[v]’s construction, where the
® operation enumerates solution combinations from two F'
sequences, each of which contains at most log, A solutions.

otherwise

E. Accelerator Merging

After the candidate selection, Cayman performs accelerator
merging, enabling multiple program regions with distinct con-
trol flows to share a reusable accelerator. The core strategy is to
merge basic blocks that share common operations by inserting
multiplexers with reconfiguration bit registers, producing a
reconfigurable datapath unit. Cayman then combines candidates
that include the merged basic blocks into a reusable accelera-
tor, each maintaining a standalone finite-state machine (FSM)

Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:42:16 UTC from IEEE Xplore. Restrictions apply.

;
b
ad o
DFG, DFG,
t t configBits
FSM | | FSM ctrlSignals _ ctrl select
linear dot-prod e

Fig. 5: Accelerator merging

for control. Upon triggering the reusable accelerator, a global
control unit, named Ctrl, transmits configuration data to the
datapath units and selects the appropriate control logic FSM to
trigger. This merging strategy is based on the observation that
basic blocks housing operations like floating-point arithmetic
and data access contribute significantly to the accelerator area,
while control logic FSMs demand much less area. Fig. 5
presents the example of merging the loop linear and loop dot-
product candidates from Fig. 2. Cayman synthesizes a reusable
accelerator containing a reconfigurable hardware unit merged
from DFG; and DFG,. The reusable accelerator accelerates
both the loops with individual FSMs.

Cayman conducts accelerator merging in a heuristic manner
for every Pareto-optimal selection solution that comprises
multiple accelerators. It estimates the area savings for merging
every pair of basic blocks contained in the solution, merges the
basic block pair with the maximum estimated area savings into
a reconfigurable datapath, and combines the two accelerators
containing the merged basic blocks into a reusable accelerator.
The merged datapaths and accelerators are also treated as
normal basic blocks and accelerators, enabling further merging
with others. The heuristic merging process is repeated until no
area savings can be achieved.

F. Implementation

We implement Cayman based on LLVM 18 for candidate
selection, accelerator merging, and hardware synthesis. We
utilize the RegionInfoAnalysis pass to identify regions and
build wPSTs. For profiling, we implement an instrumentation
pass to insert execution count and timestamp recording in-
structions within regions; the modified bitcode is compiled
and executed to gather profiling data. For program analy-
sis, we employ the MemoryDependenceAnalysis pass to get
memory dependencies, implement a custom pass to identify
stream patterns, and run the ScalarEvolution pass to analyze
footprints. Cayman’s accelerator model retrieves delay and area
of operations and data access interfaces by synthesizing them
with OpenROAD [1] targeting Nangate45 PDK.

IV. EVALUATION
A. Experiment Setup

All applications are compiled with the “-O3” flag. The
target frequency of accelerators is set to 500 MHz. Speedup
is calculated as per Equation 1. Area is retrieved from reports
of synthesizing accelerators into complete hardware and is
presented as ratios to that of a CVA6 RISC-V tile [32]. We
compare Cayman to two state-of-the-art automated accelerator

choles.. fft epic loops-..
3 5-
201 o° 501 °l301 o o
09 201
g o S
L 2 TT | s
0 0.05 0.05 0.1 0 05 0 0.5

Fig. 6: Speedup (y-axis) and area (x-axis) of solutions:
NOVIA, e QsCores, o coupled-only Cayman, and e full Cayman.

synthesis frameworks, NOVIA [21] and QsCores [23]. We
use diverse benchmarks from benchmark suites including
PolyBench, MachSuite, MediaBench, and CoreMark-Pro for
a comprehensive evaluation.

B. Result Analysis

We evaluate two different area budgets for the synthesized
accelerators: small (25%) and large (65%). The area budgets
are within the typical area range of custom accelerators [?],
[7]. Table II presents experimental results. Cayman outperforms
NOVIA and QsCores for all benchmarks. It achieves an average
speedup of 14.4x and 8.0x over NOVIA and QsCores, respec-
tively, under the budget 25%. The speedup increases to 27.2x
and 15.0x when the budget is 65%, demonstrating the better
acceleration potentials of Cayman. Cayman achieves superior
performance because it optimizes control flow and adopts fast
data access interfaces like decoupled and scratchpad. On the
contrary, NOVIA fails to support control flow and memory
accesses, and QsCores synthesizes sequential control flow
and slow access interfaces, achieving much less performance
improvement than Cayman.

Table II also presents kernel selection and accelerator
configuration details of Cayman solutions. For applications
with even-distributed hotspots, Cayman selects more kernels
for acceleration when a larger area budget is available. One
notable example is the loops-all-mid-10k-sp workload, where
Cayman accelerates 13 sequential basic blocks and 1 pipelined
region for the budget 25%, and accelerates 122 sequential
basic blocks and 40 pipelined regions for the budget 65%.
For applications with centralized hotspots, Cayman accelerates
the performance-critical regions intently with more area. For
example, Cayman synthesizes accelerators with the same #SB
and #PR for two area budgets for 13 of 16 benchmarks
from PolyBench in Table II, indicating consistent regions for
acceleration. Cayman accelerates more access operations with
a larger area budget: on average, it adopts 40 interfaces for
the budget 25%, which is increased to 53 for the budget
65%. Besides, decoupled and scratchpad interfaces are widely
adopted, occupying 83% and 81% on average for two bud-
gets, respectively, demonstrating the significance of Cayman’s
interface specialization. Besides, more scratchpad interfaces
are used when more area is available since the expensive
scratchpad interface enables greater access parallelism.

Table II also shows that Cayman’s accelerator merging
mechanism effectively saves 36% and 35% area for two area
budgets. Cayman widely synthesizes reusable accelerators, each
of which accelerates 3 distinct program regions on average
from the benchmarks. The area saving percentage goes up to

Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:42:16 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Results under two area budgets 25% and 65%. #SB and #PR denote the number of sequential basic blocks and
pipelined regions from selected kernels. #C, #D, and #S denote the number of coupled, decoupled, and scratchpad interfaces
in synthesized accelerators. The ”Area saving” columns denote the area-saving percentage by accelerator merging.

Small Area Budget (25%) Large Area Budget (65%)
Suite | Benchmark Speedup(x) Configurations Area Speedup(x) Configurations Area Runtime
over [21]]over [23] [#SB[#PR[#C [#D [#S |saving(%)||over [21]]over [23][#SB[#PR] #C [#D [#S |saving(%) (s)
3mm 35.4 14.0 16] 9] o] of 15 74 117.9 46.8 16] 9] of of 15 70 69.2
atax 16.5 6.5 9 o9 of 9 1 38 322 12.7 9 9] o] o] 10 21 155
bicg 222 8.7 8] 6] o] 9] 2 38 42.5 16.8 8] 6] of of 11 42 17.5
doitgen 72.6 29.0 9 6| of of 7 5 72.6 29.0 9 6| o] o] 7 5 373
mvt 13.2 5.2 8] 9 1] 8] 0 26 19.5 7.7 8] 9] of of 9 21 18.9
symm 13.6 9.2 41 3] 3] 6] 1 38 37.8 25.7 41 3] o] o] 10 35 1.4
syrk 19.4 7.8 9] 6] o 6] 0 24 79.9 31.9 41 3] 0] o] 4 0 32
PolyB trmm 19.0 7.6 41 3] 2] 4] 0 38 19.0 7.6 41 3] 2] 4] 0 38 0.0
cholesky 17.0 15.7 2] 6 3] 8] 0 26 17.0 15.7 2] 6] 3] 8] 0 26 0.1
gramschmid..[| 20.3 8.3 1] 12] 1] 147 0 24 91.6 37.7 51 6] 0] o] 9 48 47.2
Tu 17.5 16.3 16] of 3] 12] 0 26 17.5 16.3 6] 9 3[12] 0 26 0.2
trisolv 153 6.0 8] 6] 1] 5] 6 38 15.3 6.0 8] 6] 1] 5] 6 38 0.1
covariance.. 18.2 73 4 3] 5] 4]0 38 18.2 73 41 3] 5] 4] 0 38 0.1
jacobi-2d 15.0 13.1 13] 6] o] 12] © 24 102.9 90.3 13] 6] o] o] 12 50 47.0
deriche 5.6 45 26| 18] 0] 20] © 34 13.5 10.1 28] 21 of 21| © 39 0.1
floyd-wars.. 7.5 6.8 8] 6] o] 7] 0 24 7.5 6.8 8] 6] of 7] 0 24 0.0
fft 42.6 38.5 50 14 4] 22] 2 26 42.6 38.5 50 14 4] 22] 2 26 0.2
MachS md 7.6 47 18] 23] 12] 11] 2 44 7.6 4.6 18] 23| 12] 11] 2 44 0.1
spmy 8.6 8.6] 1| 4] 510 44 9.5 9.5 9 14| 5] 5] 0 26 0.2
nw 10.8 47 51241 of 9] 1 38 10.8 47 5124 o o] 1 38 0.1
Media cjpeg 2.8 1.9 471 39| 30] 25[47] 47 3.9 2.4 73] 51| 5[38[119] 39 0.6
epic 7.2 26 [106] 62| 2] 10] 25] 41 8.5 31 [100] 60] O] O] 33 41 1068.1
cjpeg-rose.. 5.0 4.2 99| 38] 75[150] © 47 5.8 48 [106] 31[107] 13]140] 42 172.9
zip-test 6.4 6.4 85| 38 14[279] 0 48 7.5 75 871 39| 14]295] 0O 35 21.4
CoreM |_Parser-125. 5.0 43 3] 4] o] of 5 43 5.0 43 3] 4] of of 5 43 100.4
nnet-test 45 4.6 51 19] 6]89] 0 21 8.2 8.4 36| 22| 6120 76 46 272.6
linear-alg.. 12,5 12.1 63| 12 24] 23] 34] 49 22.6 21.8 | 72 12] 24| 28] 34 44 78.2
loops-all-.. 1.4 1.4 13 1] o] o] 8 48 5.0 49 [122] 40 86[110] © 48 10.5
[[average [144 [80 [22] 14] 7] 27] 6] 36 [272 [150 [28] 16][10[25] 18] 35][708 |

74% and 70% for the 3mm benchmark, which includes 3 loops
with identical basic blocks for merging. However, Cayman only
saves 5% area for the doitgen benchmark since the benchmark
only includes one hotspot region for acceleration and does not
need accelerator merging. In practice, Cayman runs very fast,
which only takes 70.8s on average.

Fig. 6 presents the speedup and area usage of Pareto-
optimal solutions produced by the baselines and Cayman for
four benchmarks from different suites. It shows that Cayman
solutions achieve superior performance with different area
usage for all the benchmarks. Specifically, NOVIA solutions
are always located in the lower-left corner, indicating their
limited speedup and low area overhead. Cayman also achieves
comparable or better performance than NOVIA for low area
budgets since Cayman explores a broader accelerator synthesis
design space that fully covers NOVIA’s. QsCores’s performance
speedup scales worse than Cayman when the area budget
increases. Especially, QsCores cannot accelerate the loops-all-
mid-10k-sp workload from CoreMark-Pro because it contains
intensive control flow and memory access which cannot be
accelerated by QsCores’ sequential control and slow data
access interface. Compared to full Cayman solutions, cou-
pled-only ones achieve lower speedup for most benchmarks,
demonstrating the significance of modeling and specializing

processor-accelerator interfaces. The only exception is the
loops-all-mid-10k-sp workload, where the difference between
coupled-only and full Cayman solutions are minor. The reason
is that loops in the workload commonly have loop-carried
dependencies between floating-point operations, restricting the
achievable pipeline II and circumventing the performance
gains of adopting decoupled and scratchpad interfaces.

V. CONCLUSION

This paper proposes Cayman, an end-to-end framework
for high-performance custom accelerator generation. Cayman
models processor-accelerator data access interfaces and con-
ducts efficient dynamic programming-based candidate selec-
tion, synthesizing accelerators with optimized control flow and
data access. Cayman also introduces a novel accelerator merg-
ing mechanism to synthesize reusable accelerators. Experi-
mental results on various benchmarks demonstrate that Cayman
significantly outperforms the state-of-the-art frameworks.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation of China (Grant No. T2325001) and Shanghai
Municipal Science and Technology Major Project.

Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:42:16 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

T. Ajayi, V. A. Chhabria, M. Fogaca, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem et al., “Toward an
open-source digital flow: First learnings from the openroad project,” in
Proceedings of the 56th Annual Design Automation Conference 2019,
2019, pp. 1-4.

K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific
instruction-set extensions under microarchitectural constraints,” in
Proceedings 2003. Design Automation Conference (IEEE Cat.
No.03CH37451), 2003, pp. 256-261.

Bluespec. (2024) Bluespec accelerate-hls. [Online]. Available: https:
/finfo.bluespec.com/acceleratehls

I. Brumar, G. Zacharopoulos, Y. Yao, S. Rama, D. Brooks, and G.-Y.
Wei, “Early dse and automatic generation of coarse-grained merged
accelerators,” ACM Trans. Embed. Comput. Syst., vol. 22, no. 2, Jan.
2023. [Online]. Available: https://doi.org/10.1145/3546070

N. Clark, H. Zhong, and S. Mahlke, “Processor acceleration through
automated instruction set customization,” in Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 36. USA: IEEE Computer Society, 2003, p. 129.

J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-specific instruction
generation for configurable processor architectures,” in Proceedings
of the 2004 ACM/SIGDA 12th International Symposium on Field
Programmable Gate Arrays, ser. FPGA *04. New York, NY, USA:
Association for Computing Machinery, 2004, p. 183-189. [Online].
Available: https://doi.org/10.1145/968280.968307

E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, “An
analysis of accelerator coupling in heterogeneous architectures,” in 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015.
M. Damian, J. Oppermann, C. Spang, and A. Koch, “Scaie-v:
An open-source scalable interface for isa extensions for risc-v
processors,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, ser. DAC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 169-174. [Online]. Available:
https://doi.org/10.1145/3489517.3530432

D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, High—Level
Synthesis: Introduction to Chip and System Design. Springer Science
& Business Media, 2012.

V. Gnanasambandapillai, J. Peddersen, R. Ragel, and S. Parameswaran,
“Finder: Find efficient parallel instructions for asips to improve per-
formance of large applications,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2020.

X. Hao, H. Rong, M. Zhang, C. Sun, H. Jiang, and Y. Liang,
“Popa: Expressing high and portable performance across spatial and
vector architectures for tensor computations,” in Proceedings of the
2024 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 199-210. [Online]. Available:
https://doi.org/10.1145/3626202.3637566

L. Jia, Z. Luo, L. Lu, and Y. Liang, “Tensorlib: A spatial accelerator
generation framework for tensor algebra,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE Press, 2021, p. 865-870.
[Online]. Available: https://doi.org/10.1109/DAC18074.2021.9586329
L. Jia, Y. Wang, J. Leng, and Y. Liang, “Ems: efficient memory
subsystem synthesis for spatial accelerators,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, ser. DAC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 67-72.
[Online]. Available: https://doi.org/10.1145/3489517.3530411

R. Johnson, D. Pearson, and K. Pingali, “The program structure tree:
Computing control regions in linear time,” ser. PLDI '94. New York,
NY, USA: Association for Computing Machinery, 1994, p. 171-185.
[Online]. Available: https://doi.org/10.1145/178243.178258

L. Josipovi¢, R. Ghosal, and P. Ienne, “Dynamically scheduled high-
level synthesis,” in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA *18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
127-136. [Online]. Available: https://doi.org/10.1145/3174243.3174264
C. Li, Y. Wang, H. Li, and Y. Han, “Append: Rethinking asip synthesis
in the era of ai,” ser. DAC °23, 07 2023, pp. 1-6.

G. Liu, J. Primmer, and Z. Zhang, “Rapid generation of high-quality
risc-v processors from functional instruction set specifications,” in
Proceedings of the 56th Annual Design Automation Conference 2019,
2019, pp. 1-6.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

J. Oppermann, B. M. Damian-Kosterhon, F. Meisel, T. Miirmann,
E. Jentzsch, and A. Koch, “Longnail: High-level synthesis of portable
custom instruction set extensions for risc-v processors from descriptions
in the open-source coredsl language,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ser. ASPLOS °24, 2024.
[Online]. Available: https://doi.org/10.1145/3620666.3651375

L. Pozzi, K. Atasu, and P. Ienne, “Exact and approximate algorithms
for the extension of embedded processor instruction sets,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, no. 7, pp. 1209-1229, 2006.

A. Sohrabizadeh, C. H. Yu, M. Gao, and J. Cong, “Autodse: Enabling
software programmers design efficient fpga accelerators,” in The
2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA °21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 147. [Online]. Available:
https://doi.org/10.1145/3431920.3439464

D. Trilla, J.-D. Wellman, A. Buyuktosunoglu, and P. Bose, “Novia:
A framework for discovering non-conventional inline accelerators,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO °21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 507-521. [Online]. Available:
https://doi.org/10.1145/3466752.3480094

G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conservation
cores: reducing the energy of mature computations,” ACM SIGARCH
Computer Architecture News, vol. 38, no. 1, pp. 205-218, 2010.
[Online]. Available: https://dl.acm.org/doi/10.1145/1735970.1736044
G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B. Tay-
lor, and S. Swanson, “Qscores: Trading dark silicon for scalable energy
efficiency with quasi-specific cores,” in 2011 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2011.

Y. Xiao, Z. Luo, K. Zhou, and Y. Liang, “Cement: Streamlining
fpga hardware design with cycle-deterministic ehdl and synthesis,”
in Proceedings of the 2024 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, ser. FPGA °24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 211-222.
[Online]. Available: https://doi.org/10.1145/3626202.3637561

Xilinx Inc. (2024) Vitis high-level synthesis user guide (ugl399).
[Online]. Available: https://docs.amd.com/r/en-US/ug1399-vitis-hls

R. Xu, Y. Xiao, J. Luo, and Y. Liang, “Hector: A multi-level
intermediate representation for hardware synthesis methodologies,”
in Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design, ser. ICCAD ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3508352.3549370

H. Ye, C. Hao, J. Cheng, H. Jeong, J. Huang, S. Neuendorffer, and
D. Chen, “ScaleHLS: A New Scalable High-Level Synthesis Framework
on Multi-Level Intermediate Representation,” 2021. [Online]. Available:
http://arxiv.org/abs/2107.11673

C. H. Yu, P. Wei, M. Grossman, P. Zhang, V. Sarker, and J. Cong, “S2fa:
an accelerator automation framework for heterogeneous computing in
datacenters,” ser. DAC ’18, New York, NY, USA, 2018. [Online].
Available: https://doi.org/10.1145/3195970.3196109

G. Zacharopoulos, A. Ejjeh, Y. Jing, E.-Y. Yang, T. Jia, I. Brumar,
J. Intan, M. Huzaifa, S. Adve, V. Adve, G.-Y. Wei, and D. Brooks,
“Trireme: Exploration of hierarchical multi-level parallelism for
hardware acceleration,” ACM Trans. Embed. Comput. Syst., vol. 22,
no. 3, Apr. 2023. [Online]. Available: https://doi.org/10.1145/3580394
G. Zacharopoulos, L. Ferretti, G. Ansaloni, G. Di Guglielmo, L. Carloni,
and L. Pozzi, “Compiler-assisted selection of hardware acceleration can-
didates from application source code,” in 2019 IEEE 37th International
Conference on Computer Design (ICCD), 2019, pp. 129-137.

G. Zacharopoulos, L. Ferretti, E. Giaquinta, G. Ansaloni, and L. Pozzi,
“Regionseeker: Automatically identifying and selecting accelerators
from application source code,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2019.

F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-
v core in 22-nm fdsoi technology,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629-2640, Nov
2019.

Authorized licensed use limited to: Peking University. Downloaded on January 09,2026 at 06:42:16 UTC from IEEE Xplore. Restrictions apply.

