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ABSTRACT

Field-programmable gate arrays (FPGAs) provide opportunities for
adopting cutting-edge microarchitectural technologies to accelerate
emerging applications. However, it remains challenging to program
FPGAs. On one hand, hardware description languages (HDLs), al-
though lauded for their ability to provide circuit representations
that closely mimic the inherent hardware structures, have been
criticized for their inherent shortcomings, including low-level pro-
gramming and poor productivity. On the other hand, high-level
synthesis (HLS) attempts to raise the abstraction level of hardware
design to the software domain. However, it often results in un-
predictable solutions due to semantic difference between software
and hardware. Furthermore, domain-specific languages (DSLs) tai-
lored for FPGA programming have their own set of limitations,
particularly in terms of expressiveness and flexibility.

In this work, we introduce a novel hardware design framework
named CEMENT, which encompasses the embedded HDL (eHDL)
CmTHDL and the compiler CMTC, providing a better programming
framework for FPGA. CMTHDL introduces event-based procedural
specification alongside RTL description, empowering designers to
describe hardware productively at a higher level of abstraction
while maintaining cycle-deterministic behavior. CMTC provides a
comprehensive compilation workflow that includes analyzing the
timing behavior of the hardware and conducting synthesis to yield
solutions with anticipated performance for FPGAs. Experiments
show that CEMENT provides comparable productivity, but offers
1.41x-3.49x speedup, and saves 23%-82% resources compared to
existing HLS or DSL tools. The practical significance of CEMENT
is further validated through a case study of designing real-world
FPGA-based accelerators.
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1 INTRODUCTION

Field-programmable gate arrays (FPGAs) provide powerful reconfig-
urability to enhance performance and energy efficiency for diverse
applications without the high costs associated with custom silicon.
Inrecent years, FPGA-based accelerators have been emerging across
various domains, including artificial intelligence [59], graph pro-
cessing [14], cryptography [1], and networking [16]. Despite their
promise, FPGAs have long suffered from a fundamental challenge:
the programming intricacies. The existing programming models
exhibit limitations on either design complexity or behavioral accu-
racy, thereby impeding the FPGA-based accelerators to keep pace
with the ever-evolving landscape of emerging applications.

Hardware description languages, such as SystemVerilog program
FPGA explicitly at the register-transfer level (RTL), closely align
with the hardware’s intrinsic nature. While good for manually
fine-tuning FPGA performance, HDLs pose challenges, notably
their low-level abstraction, which exposes the connections between
hardware components but fails to provide insights into the inter-
cycle behavior of the hardware. Consequently, achieving expected
performance and functionality demands extensive expertise from
HDL programmers. This challenge intensifies when implementing
algorithms with complex control logic, often represented as finite-
state machines (FSMs), necessitating substantial effort for manual
design and optimization.

High-level synthesis (HLS) tools like Vitis HLS [55] raise abstrac-
tion by synthesizing hardware from annotated subsets of software
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languages, such as C/C++. They have gained popularity for im-
proving FPGA programming productivity. Unfortunately, program-
ming FPGAs with software languages presents inherent challenges,
given the disparity between software’s sequential behavior and
hardware’s parallel nature. Programmers are compelled to supply
directives as pragmas to guide synthesis, which introduces limited
microarchitectural expressiveness and unpredictability. Emerging
domain-specific languages (DSLs) [31, 38, 54] for FPGA program-
ming can only mitigate certain pitfalls of HLS for specific domains.

This paper introduces a novel hardware design framework, CE-
MENT, designed to facilitate productive FPGA programming while
preserving performance, predictability, and expressiveness. The
frontend language, CMTHDL, introduces an event layer and an
event-based ctrl sub-language as the special features in addition to
the standard RTL description. The event layer captures the occur-
rence of operations and connections among hardware components,
while the ctrl sub-language specifies deterministic inter-cycle tim-
ing behavior by procedural statements. These innovations raise
the level of abstraction for HDL programmers, enabling efficient
implementation of target applications without the need for com-
plex control logic design. The CMTC compiler features the control
synthesis algorithm that adheres to timing specifications, produc-
ing circuits with predictable performance and optimized resource
usage tailored for FPGAs. This stands in contrast to HLS tools,
which take untimed software programs and yield unpredictable
hardware. CMTC also incorporates timing analysis techniques to de-
tect cycle-level timing violations in CMTHDL programs, enhancing
correctness and productivity in FPGA programming.

CEMENT framework uses pure-Rust implementation, built on
top of the intermediate representation framework ir-rs. We present
experiments and a case study to evaluate CEMENT. Our aim with the
CEMENT framework is to provide FPGA programmers with a supe-
rior alternative, allowing them to make FPGA designs with general
microarchitectural features productively and deterministically.

The main contributions of this paper are as follows:

e We introduce CMTHDL, a hardware description language
that is embedded in Rust and incorporates an event layer and
the ctrl sub-language to facilitate cycle-deterministic FPGA
programming.

o We present CMTC compiler, which is built upon the IR frame-
work, ir-rs, and incorporates cycle-level timing analysis and
control synthesis techniques to produce circuits with correct
functionality and anticipated performance.

e We demonstrate that CEMENT produces low-latency and
resource-efficient circuits through experiments. It offers 1.41x-
3.49x speedup and saves 23%-82% resources compared to
HLS and DSL tools on PolyBench benchmarks. Additionally,
a case study highlights CEMENT’s practical significance in
real-world accelerator design.

e CEMENT framework is open source, which is available at
https://github.com/pku-liang/Cement.

Paper organization. Section 2 provides background about FPGA
programming frameworks and illustrates our motivation with an
example. Section 3 describes the language features of CMTHDL.
Section 4 introduces the CMTC compiler, including the IR frame-
work, ir-rs, as well as analysis and synthesis techniques. Section 5
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discusses the evaluation results from experiments and the case
study. Section 6 concludes the paper.

2 BACKGROUND AND MOTIVATION

We discuss existing programming frameworks for FPGAs, including
hardware description languages (HDLs), high-level synthesis (HLS)
tools, domain-specific languages (DSLs), and intermediate repre-
sentations (IRs). We summarize the strengths and limitations of the
representatives in Table 1, considering factors like microarchitec-
tural expressiveness, preset protocol constraints, cycle determinism,
and timing awareness. Subsequently, we elucidate the motivation
behind the CEMENT framework through the design of an FPGA-
based accelerator.

2.1 FPGA Programming Frameworks

Hardware Description Languages. Traditional HDLs, exempli-
fied by (System)Verilog and VHDL, operate at the register-transfer
level (RTL). Despite offering a close-to-nature representation of
hardware, they are notorious for poor productivity and unaware-
ness of cycle-level timing information. Specifically, they expose the
connections and operations among hardware constructs without
specifying their occurrence at particular cycles, lacking cycle de-
terminism and necessitating meticulous handling by programmers
to ensure expected functionality, which is error-prone. In practice,
extra logic and signals for compelled synchronization potentially
lead to worse frequency and resource consumption.

Embedded HDLs [2, 4, 8, 12, 19, 36, 42], such as Chisel [3], lever-
age advanced language features to enhance productivity. They
provide more user-friendly description syntax for general microar-
chitecture and facilitate module instantiation with different parame-
ters. Nonetheless, these languages remain rooted in RTL and require
manual control logic specification, lacking both cycle determinism
and timing awareness.

High-level HDLs [5, 9, 41], including Bluespec SystemVerilog
(BSV), employ transactional hardware behavior description. Take
BSV as an example. Though it describes general microarchitecture,
it requires hardware to implement the ready-enable preset proto-
col, and causes unpredictable transaction selection at each cycle,
lacking both cycle determinism and timing awareness. Such limita-
tions prevent the productive description of correct functionality for
FPGA programmers. While BSV introduces the Stmt sub-language
for procedural control logic description, it generates FSMs with
sub-optimal performance. Some other HDLs [29, 35, 39, 46] also
incorporate syntax to describe control logic like looping and pipelin-
ing. For example, Filament [39] introduced the timeline type system
to describe hardware of limited static pipeline microarchitecture,
providing both cycle determinism and timing awareness.

High-level Synthesis. Existing HLS tools [6, 17, 23, 27, 52, 60]
like Vitis HLS [55] employ a subset of software languages, such as
C++, to specify the untimed behavior of target accelerators. They
necessitate directives, like pragmas, supported by compilers, to sup-
plement microarchitectural details. These tools rely on black-box
heuristics to synthesize hardware, automatically wrapping mod-
ules with preset protocol interfaces. HLS provides timing awareness
and improves the productivity of hardware design. However, its
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Table 1: Comparison between CEMENT and other representative hardware design frameworks supporting FPGA programming,.

Design Entry Product Control Logic Microarchitectural Preset Protocol ~ Cycle Timing
Specification Expressiveness Constraint Determinism Awareness

Chisel [3] eHDL(Scala) RTL manual general none no no
BSV+Stmt [41] HDL RTL procedural general ready-enable no no
Filament [39] HDL Calyx timeline type limited static pipeline none yes yes
HLS tools [55]  C++/... RTL software+directives  limited by directives preset interfaces no yes
Dabhlia [38] DSL HLS/Calyx  software+affine type only sequential controller fixed interface no yes
Spatial [31] DSL RTL software+templates  limited by templates fixed interface no yes
Aetherling [15] DSL RTL space-time type static streaming fixed interface yes yes
Calyx [40] IR RTL procedural limited by go-done protocol ~ go-done partial partial
CEMENT eHDL(Rust) RTL procedural general none yes yes

Note: The "procedural" in the Control Logic Specification column means that the control logic can be specified by procedural statements (if, for, etc.) and
generated automatically. Microarchitectural Expressiveness refers to the microarchitecture that can be described. Preset Protocol Constraint refers to
the constraints on hardware interfaces, for example, “go-done” indicates that modules must have “go” and "done” signals. Cycle Determinism indicates
whether the description deterministically dictates the occurrence of the hardware operations at each cycle prior to synthesis. Timing Awareness indicates
whether programmers can get the timing report of the occurrence of the operations after synthesis or compilation.

software abstraction level, far from hardware’s nature, leads to lim-
itations in several folds: (a) The black-box tool can be controlled
only via directive settings, preventing cycle-deterministic sched-
uling decisions and yielding unpredictable circuits under different
configurations. (b) Specifying hardware in software with directives
constraints microarchitectural design space, hindering advanced
optimizations that require expertise in software and hardware.

Domain-specific Languages. DSLs like Dahlia [38] and Spatial
[31] have emerged to address HLS limitations. Dahlia employs a
time-sensitive affine type system to validate memory access con-
straints, preventing hardware with unpredictable performance or
resource usage. Spatial [31] offers templates to support more mi-
croarchitectures for target accelerators. Both Dahlia and Spatial
provide timing awareness without guaranteeing cycle determinism.
Besides, Aetherling [15] introduces a space-time type system to
describe static streaming hardware in a cycle-deterministic and
timing-aware manner. These DSLs generate fixed hardware inter-
faces, and only improve the predictability or extend with more
microarchitecture design options for certain applications compared
to traditional HLS tools. Similarly, other DSLs [7, 11, 20, 21, 25, 32,
33, 43, 45, 47, 50, 51, 58] are tailored towards accelerator designs
serving specific functions (e.g., stencil) or microarchitectures.

Hardware Intermediate Representations. The field of circuit
design has witnessed the emergence of new hardware intermedi-
ate representations (IRs) [13, 24, 57], along with the CIRCT [10]
community. For example, Calyx [40] introduces software-like con-
trol flow representation and generates hardware controllers via
its compiler, thereby facilitating accelerator generation. However,
Calyx only guarantees cycle determinism and timing awareness for
programs with explicit latency attributes when static compilation
passes are enabled. In other cases, it generates latency-insensitive
hardware of microarchitecture limited by the go-done preset proto-
col. Hector [57] provides a multi-level intermediate representation
for hardware synthesis, which guarantees cycle determinism and
timing awareness for statically scheduled circuits.

class shuffler ..{ void shuffler() {

| | val io=I0(..) while (!loop_exit) {
E R val arb=Module(..) #pragma HLS pipeline
(M) val state=Reg(..) #pragma HLS dependence
send I (I val next=Wire(..) for (..) {
| | state:=next #pragma HLS unroll
| S | = when (..) { // resend
wait 3-s'.cage next:= ..; .
Arbiter } elsewhen (..) {..} // call arbiter
— = val S1=stage(state,1); arbiter(..);
when (S1) { for (..) {
recv \—l % // resend #pragma HLS unroll
QR F- // send to arbiter // xbar
Crossbar 3} 3}
xba
I I // other stages }
vV 3 }
(a) parch (b) Chisel (c) HLS

Figure 1: Example of a 4-stage pipelined shuffler.

2.2 Motivational Example

To illustrate the limitation of existing programming, we present
an example — designing a 4-stage pipelined shuffler with a 3-stage
arbiter. The shuffler has been employed in FPGA-based acceler-
ators [14, 22] to address bank conflicts of on-chip memories. Its
microarchitecture is outlined in Figure 1a.

General HDLs, such as SystemVerilog and Chisel, lack explicit
descriptions of static, non-stallable pipelines that both the shuffler
and the arbiter employ, leaving programmers unaware of pipeline
stages or timing information. Thus, programmers are compelled
to manually insert pipeline buffer registers and implement FSMs,
as shown in Figure 1b, which could accidentally lead to unaligned
stage schedules or incorrect FSM transactions. Regarding the shuf-
fler design, the depth of the arbiter pipeline necessitates a 2-cycle
interval between the shuffler’s packet sending and receiving stages.
However, when manually designed FSMs violate such timing re-
quirements, HDL compilers generate hardware without reporting
errors. This incurs extra time to debug. This issue is prevalent for
HDLs without timing awareness.

Du et al. [14] introduce an HLS implementation (see Figure 1c)
of the shuffler pipeline in C++, treating pipelines as loops with
sequential iterations. However, the software semantics mandate
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Figure 2: Overview of the CEMENT framework.

that sending packets in the current iteration depends on arbiter
decisions from the previous iteration. This results in an initial in-
terval (II) equal to the arbiter pipeline’s depth (3 cycles in this
example). Achieving an II of 1 requires inserting additional di-
rectives (e.g., dependence in Vitis HLS) to redefine dependency
constraints. Such optimization requires a deep understanding of
the synthesized hardware and the provision of directives to guide
black-box synthesis. Notably, the optimization employed by Du
et al. [14] worked in Vitis HLS 2020.2 but failed in subsequent re-
leases from 2021 onward. The root cause behind this can be traced
to HLS’s utilization of untimed specifications instead of describing
operations in a cycle-deterministic manner.

Furthermore, the shuffler’s complexity surpasses the capabili-
ties of most DSLs. The inability of any of these tools motivates
the CEMENT framework, which combines the desirable features
elucidated in Table 1. CMTHDL, as shown in Listing 1, explicitly
describes the shuffler pipeline using the seq procedural statement.
This statement specifies the operations occurring in consecutive
cycles deterministically. By setting II=1 for both the shuffler and
arbiter pipelines, CMTC compiler verifies the timing constraints
on the connection between the shuffler and arbiter and generates
hardware modules of the expected performance.

3 CMTHDL

We design a cycle-deterministic HDL, CMTHDL, which is embedded
in Rust. It serves as the frontend language for the CEMENT frame-
work, as shown in Figure 2. We provide a brief introduction to
CmTHDL’s embedding in Rust, including how to customize module
interfaces and specify hardware structure (Section 3.1). We empha-
size the advantages of tight embedding in Rust. Additionally, we
present the innovative features of CMTHDL, including the event
layer and the ctrl sub-language (Section 3.2). These features raise
the abstraction level of hardware description with timing informa-
tion. CMTHDL enables FPGA programming in a more productive
and deterministic manner, without sacrificing direct control over
microarchitectural details. Furthermore, we explore support for
external modules, such as DSP intellectual property (IP), with spec-
ified timing information (Section 3.3).

3.1 HDL Embedded in Rust

The major characteristic of CMTHDL’s embedding in Rust is the
tight integration with the Rust type system. Specifically, CMTHDL
allows programmers to define customizable hardware constructs,
including data types and module interfaces, as Rust types using
traits [30, 49]. The four traits in Table 2 dictate all the required
functionality of data types, data bundles, interfaces, and instantiated
interfaces, respectively, where a data bundle represents a collection
of undirectional data types, an interface represents a collection of
directional data types, and an instantiated interface is the product
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of instantiating the corresponding interface within a target module,
comprising ports of directional data types.

The traits enable the primary RTL features including module in-
stantiation and port connection by the trait methods, while CMTHDL
further provides an extensive operation mechanism to support var-
ious operations on ports. Besides, CMTHDL leverages the powerful
macro system in Rust to provide concise syntax for hardware de-
scription. Overall, CMTHDL provides comprehensive support for
RTL description within the Rust programming language.

The main benefits of this approach are the combination of en-
hanced type checking on hardware constructs and greater param-
eterization flexibility. Specifically, defining hardware constructs
as Rust types promptly provides diagnostic feedback through lint-
ing or, importantly, at compile-time, prior to the elaboration and
hardware generation phases, if any type violation, such as the
width mismatch of the data types and the direction mismatch of
the ports, is detected. Besides, traits in CMTHDL support both
the compile-/elaboration-time parameterization for hardware con-
structs. Compile-time parameterization enables the type checking
on the parameters, while elaboration-time parameterization pro-
vides greater flexibility for the parameters to remain uncertain
until the elaboration phase. CMTHDL adeptly accommodates both
modes of parameterization for programmers to choose, seamlessly
combining their specific benefits.

Beyond the advantages above, embedding in Rust also leads to
additional benefits, including access to the expansive Rust ecosys-
tem, fast elaboration time, and minimal memory usage. We further
explain CMTHDL’s embedding in Rust by the example of the shuffler
module (Figure 1a) described in Listing 1, which generally contains
two steps: (a) define data and interfaces, and (b) instantiate modules,
specify operations, and connect ports.

Data and Interface Definition. Lines 1-14 in Listing 1 effectively
define the necessary data types and interfaces for the shuffler mod-
ule, where B<N> implements the DataType trait (@), representing a
data type signifying a bit vector with a compile-time constant width
of N, and Pkt<N, T> implements the Bundle trait (@), representing
a bundle of the data T, the destination addresses B<{clog2(N)}>,
and the valid bit B<1>. Pkt<N, T> is defined using the bundle macro
at line 1, which automatically implements the Bundle trait for
the specified struct type. Besides, the PktxN interface is defined
using the interface macro at line 7, which generates three re-
lated types—PktxNF1ip, PktxNInst, and PktxNFlipInst—and im-
plements appropriate traits for these types, as illustrated below:

FlipT
PktxNFlip

IfcT

PktxN
FlipT
o] e T |
FlipT
. ’lPktalipInst]
Notably, the Interface trait (€)) features two associated types:

FlipT and InstT. The former signifies the interface with the oppo-
site direction, while the latter denotes the type of the corresponding
instantiated interface. Similarly, the IfcInst trait (@) has two as-
sociated types: F1ipT and IfcT.

[] Interface
[l 1fcInst

FlipT

Module Instantiation, Operation, and Connection. Lines 15-39
in Listing 1 define the shuffler module with the PktxN<N, T> inter-
face instantiated into local variable io of type PktxNInst<N,T>.



Cement: Streamlining FPGA Hardware Design with Cycle-Deterministic eHDL and Synthesis

Table 2: Traits and example implementation in CmTHDL

Trait Example Implementation

// data types
trait DataType {
fn width() -> usize;
fn ir_type() -> IrData;

impl<const N: usize> DataType
for B<N> {
fn width() -> usize { N }
// ir_type() omitted
}
impl<const N: usize, T:DataType>
Bundle for Pkt<N,T> {
fn total_width() -> usize; fn total_width() -> usize {
fn ir_types() -> Vec<IrData>; T::width() + clog2(N) +
} } // ir_types() omitted
}
impl <const N:usize, T: DataType>
Interface for PktxN<N,T> {
type FlipT = PktxNFlip<N,T>;
type InstT = PktxNInst<N,T>;

// data bundles
trait Bundle {

// interfaces

pub trait Interface: {
type FlipT: Interface<FlipT=Self>;
type InstT: IfcInst<

IfcT = Self, fn to_inst(self)->Self::InstT {
FlipT = Self::FlipT::InstT PktxNInst {
>; clk: self.clk.to_inst(),
fn to_inst(self) -> Self::InstT; // omitted
// other methods omitted 3
} } // other methods omitted

}

impl <const N:usize, T: DataType>
IfcInst for PktxNInst<N,T> {
type FlipT = PktxNFlipInst<N,T>;
type IfcT = PktxN<N,T>;
fn ifc(&self) -> Self::IfcT {
// omitted
} // other methods omitted

// instantiated interfaces
pub trait IfcInst:
Connect<Self::FlipT> {
type FlipT: IfcInst<FlipT=Self>;
type IfcT: Interface<InstT=Self>;
fn ifc(&self) -> Self::IfcT;
// other methods omitted
} }

The instance! macro at line 18 instantiates an arbiter submodule
from the interface Arbiter: :<N,T>: :new(). The inner mux opera-
tion at line 28 takes three operands: resend.valid, a single port
of data type B<1>, as well as resend and i, both of which are a
collection of ports defined by the Pkt<N,T> bundle. Lines 22-23
employ the overloaded %= operator to specify connections.

3.2 Event-based Extension

We introduce the event-based extension to CMTHDL. The exten-
sion encompasses the event layer that defines the events signifying
the occurrence of guarded operations and connections across cycles.
It also includes the ctrl sub-language, which specifies the timing
behavior of events through procedural statements. This extension
is designed to enhance CMTHDL by providing cycle determinism
and timing awareness features. It empowers FPGA programmers
to work at a higher level of abstraction while maintaining deter-
ministic specifications.

Event Layer. The event layer specifies events guarding hardware
behavior. An event is a set of guarded hardware behaviors that
consistently occur simultaneously. This includes operations and
connections, along with timing information indicating the cycle
at which these behaviors occur. In CMTHDL, we extend the Event
type, which is constructed using the event! macro.

Events can provide timing information in two formats: (a) a
boolean signal that indicates whether the behavior occurs at a
specific cycle, and (b) a sequence of cycles during which the guarded
behavior occurs. Considering the boolean signal format, CMTHDL
provides the syntax for the conversion between events and boolean

1

2
3
4
5
6
7
8
9

29

31

38
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#[bundle(Default)]

pub struct Pkt<const N: usize, T: DataType> {
data: T,
dest: B<{ clog2(N) }>,
valid: B<1>,

}

#[interface(Default)]

pub struct PktxN<const N: usize, T: DataType> {

clk: Clk, // in
go: B<1>, // in
i: [Pkt<N,T>; NI, // in

ready: <[B<1>; N] as Interface>::FlipT, // out
o: <[Pkt<N,T>; N] as Interface>::FlipT,// out

module! {
<const N:usize, T: DataType> PktxN<N,T> =>
shuffler(io, /* args */) {
let arbiter = instance!(arbiter(Arbiter::<N,T>::new()));
let resend = wire!(arbiter.resend.ifc());
let sel_reg = reg!(arbiter.sel.ifc(), io.clk);
let receive = event! {
resend.i %= arbiter.resend;
sel_reg.wr %= arbiter.sel;
};
let send = event! {
for (i, ready, resend, arb_pkt) in
multizip((io.i, io.ready, resend.o, arbiter.pkt)) {
arb_pkt %= receive.mux(resend.valid.clone().mux(resend,

— i.clone()), i);

b
// omitted
Y
// events ‘wait’® and ‘xbar® are omitted

let pipeline = stmt! {
seq { send; wait; receive; xbar; }
}
let go = event!(io.go);
synth! (pipeline, Pipeline::new(io.clk, go, 1));

Listing 1: Shuffler (Figure 1a) in CMTHDL with more details

signals in the RTL description. Considering the sequence of cycles
format, we formally denote it as sc[e] for the event e. Events can be
classified as static or dynamic, depending on whether the sequence
of cycles can be determined during elaboration. Dynamic events,
also known as data-dependent events, have their cycle sequence
related to data from input ports.

For instance, lines 21-24 and 25-31 in Listing 1 define the receive
event and the send event, respectively. The former guards two
connections. At line 36, the go event is constructed from the boolean
port io.go. Meanwhile, at line 28, the receive event, converted to
a boolean signal, becomes an operand for the outer mux operation.

The event layer equips CMTHDL with timing awareness, en-
abling programmers to access timing information for guarded hard-
ware behavior. CMTHDL further dictates the cycle determinism
feature for events, indicating that the sc[e] must be deterministic
for every event e given the data fed through the input ports at the
specific cycles. For example, when the io.go signal in Listing 1
is asserted at cycle {0, 1, 2}, the send event has sc[send]={0, 1, 2}
deterministically. It requires the timing information of events to be
specified in a strict manner, as the ctrl sub-language observes.

Ctrl Sub-Language. We introduce the ctrl sub-language to spec-
ify timing information for events while maintaining determinism.
This sub-language employs procedural statements to define the
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Table 3: Statements in the ctrl sub-language

Variants Step(StepStmt)  Seq(SeqStmt) Par(ParStmt) If(IfStmt) For(ForStmt) While(WhileStmt)
Type struct StepStmt { struct SeqStmt { struct ParStmt { struct IfStmt { struct ForStmt { struct WhileStmt {
Definition events: Vec<Event>, stmts: Vec<Stmt>, stmts: Vec<Stmt>, cond: Event, indvar: Reg, cond: Event,
entry: Vec<Event>, } 3 t_stmt: Box<Stmt>, range: Range, do_stmt: Box<Stmt>,
exit: Vec<Event>, e_stmt: Box<Stmt>, do_stmt: Box<Stmt>, }
} 3 }
Macro [x] seq { par { if for { while {
Syntax e0, el s0; sl s0; si [cond] t_stmt [indvar in rangel [cond] do_stmt
[yl } 3} else e_stmt do_stmt 3}
3 }
Timing Wait until x happens, Trigger s@ and s1 Trigger s and s1 Trigger t_stmt or Repeat do_stmt Repeat do_stmt
Rule trigger ed and e1in  sequentially immediately, wait e_stmt immediately without interval without interval
one cycle, then wait without interval. until all done if cond happens or according to range.  until cond fails.
until y happens. not.
Latency 1 + #entry-cycles +  L[s@]+L[s1] max{L[s@], L[s1]}  L[t_stmt]or L[do_stmt] L[do_stmt]
#exit-cycles Lle_stmt] xtrip-count xtrip-count
Cycle sc[e@] =sclel] = sc[s@] = sc[s], sc[s@] = sc[s] sc[t_stmt] =sc[s], sc[do_stmt] = sc[do_stmt] =
Inference sc[s]+#entry-cycles sc[s1] =sc[s]+L[s@] sc[s1] = sc[s] if cond happens sc[s]+k*L[do_stmt] sc[s]+k*L[do_stmt]

timing of events. Each statement in the ctrl sub-language consists
of sub-statements or events whose timing information adheres to
deterministic rules. The ctrl sub-language provides an enum type
called Stmt, which includes six variants corresponding to six sup-
ported statements (see Table 3). Each statement is implemented as
a struct type (as indicated in the "Type Definition" row of the table).
Furthermore, CMTHDL offers a macro called stmt! that constructs
a statement from the provided statements or events, using the syn-
tax informally presented in the "Macro Syntax" row of the table.
For example, in Listing 1, lines 33-35 define a seq statement using
four step statements, each constructed from a single event.

The "Timing Rule" row in the table illustrates how statements
specify timing information for their contained statements or events.
This specification maintains cycle determinism, with the unit state-
ment, step, explicitly stating that its contained events are triggered
at the same cycle. All other statements ensure there are no extra,
unexpected cycles. As a result, the statements have deterministic
latencies, denoted as L[s] for the statement s, as shown in the "La-
tency" row. Note that the latencies of the statements are allowed
to be data-dependent, such as the entry-/exit-cycles for the step
statements and the branch choice for the if statement. However,
they are determined by the timing rules given the specific inputs.

Additionally, we extend the definition of the sequence of cycles
to include statements, denoted as sc[s]. This sequence represents
the cycles at which the statement begins execution. With cycle
determinism ensured by the timing rules, we can infer the timing
information for the events and statements within a given statement
according to the "Cycle Inference" row. This top-down inference
allows for further analysis, as detailed in Section 4.2.

Finally, we provide the synth! macro, which takes a statement
from the ctrl sub-language extension and a configuration value to
synthesize control logic that meets the statement’s timing specifica-
tion. The synthesis process is elaborated upon in Section 4.3. This
feature enables FPGA programmers to describe hardware behavior
at a higher level of abstraction while maintaining cycle determinism,

highlighting the main benefit of the ctrl sub-language extension for
FPGA programming. For instance, line 37 in Listing 1 synthesizes
the pipeline statement using a configuration that specifies the
clock signal, triggering event, and initial interval (II=1).

3.3 Timed External Modules

CMmTHDL provides a feature that allows for the description of ex-
ternal modules with cycle-level timing information specified. This
capability is particularly valuable for FPGA programmers seeking
to leverage on-board resources, including Block RAMs (BRAMs)
and DSP slices (DSPs), to improve their target designs.

extern_module! { <T: DataType> DspBinOp<T> /* x, y, rst %/ =>

1

2 multiply_dsp(io, lat: u32)[tcl = format!("read_ip ..")] {
3 let (e_x, e.y, e_rst) = guard!(io.x, io.y, io.rst);

4 let s_delay = delay(lat-1);

5 specify! { stmt! { seq { e_x,e_y; s_delay; e_rst } } };
6 }

7 %}

The CMTHDL description above describes a pipelined multiplier
that is implemented on DSP blocks with a parameterized latency
lat. The extern_module! macro defines an external module from
the provided interface DspBinOp<T>. Line 2 describes the Tcl com-
mand to read and configure the intellectual property (IP) used by
the multiplier. Lines 3-5 define the timing information of the mod-
ule, where the guard! macro creates events to guard ports, the
delay function constructs a seq statement of empty steps from
the given number of cycles, and the specify! macro specifies the
timing information of the module using the seq statement, which is
similar to the synth! macro but does not synthesize control logic.

This feature enables programmers to integrate black-box IPs in a
cycle-deterministic manner, facilitating the detection of cycle-level
timing violations, such as fetching results at inappropriate cycles,
through timing analysis (detailed in Section 4.2). Additionally, the
extern_module! macro enhances interoperability with commercial
toolchains and legacy modules written in traditional HDLs, such
as (System)Verilog. This is achieved by replacing the tcl keyword



Cement: Streamlining FPGA Hardware Design with Cycle-Deterministic eHDL and Synthesis

(line 2) with the path keyword, which takes the path to the external
(System)Verilog file as an argument.

4 CMTC COMPILER

The CmTC compiler produces hardware solutions from CMTHDL
programs, as shown in Figure 2. We introduce the Rust-based in-
termediate representation (IR) framework, ir-rs, upon which we
construct CMTC. Then, we describe the principal features of the
compiler, including the timing analysis (Section 4.2), and the con-
trol synthesis (Section 4.3) that synthesizes the control logic from
the ctrl sub-language. These analysis and synthesis techniques har-
ness the event-based extension features of CMTHDL, significantly
improving the productivity of hardware design by alleviating the
burden of manual timing validation and FSM implementation.

4.1 ir-rs: IR Framework in Rust

ir-rs is an IR framework implemented in pure Rust. Inspired by
projects like MLIR [34] and xDSL [53], we design ir-rs around
operations that represent IRs in the static single-assignment (SSA)
form [44]. Each operation type is defined as a Rust struct that
inherently implements the trait Op. This trait outlines the common
behavior expected from SSA IRs, which includes methods such as
get_def's for retrieving values defined by the operation, get_uses
for accessing values used by the operation, and more. We facilitate
the creation of new operation types with the operation! macro. ir-
rs also offers a mechanism for defining checking and printing rules
for custom operation types. Additionally, it allows for programming
transformation passes that operate on these operations. It provides
the machine! macro to create an IR machine responsible for storing
and manipulating the selected operations.

To support the CMTC compiler, we implement the operations
from CIRCT core dialects [10] in ir-rs through the operation!
macro. Subsequently, we define operations to accommodate the
event-based extension of CMTHDL. We also implement transforma-
tion passes for timing analysis techniques (Section 4.2) and control
synthesis (Section 4.3). Eventually, the CMTC compiler encompasses
an IR machine, referred to as CMTIR, which incorporates the defined
operations and passes through the machine! macro. The embedded
CMTHDL programs will create IR operations in CMTIR with the
provided APIs during elaboration. Additionally, CMTIR supports
operation deduplication by hashing the current operation and veri-
fying whether an identical operation exists. This feature reduces
peak memory consumption during elaboration.

After applying analysis and synthesis passes within CmTIR,
CMTC yields a final circuit comprised solely of operations from
the CIRCT core dialects. The backend then applies CIRCT passes,
such as ExportVerilog, to produce SystemVerilog code that can
be further synthesized using tools like Vivado [56] or validated
through RTL simulation using Verilator [48], Khronos [61], etc.
Additionally, CMTC provides programmers with APIs to create
testbenches for simulation purposes, which is omitted in this paper.

4.2 Timing Analysis

As outlined in Section 3.2, events and statements can be catego-
rized as either static or dynamic, depending on whether their cycle
sequences can be determined during elaboration. Consequently, we
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let s_for = stmt! { let s_pipe = stmt! { let s_while = stmt! {

for { seq { while { [cond]
[i in 0..4] send_mul; delayl; [io_a_valid];
e_pipe recv_mul recv_x, store_x
} } 3}
¥ b 3

synth! (s_for, io.go); synth!(s_pipe, e_pipe); synth!(s_while, io.go);

(a) static_m module (b) dyn_m module

Figure 3: Examples of ctrl sub-language for timing analysis

introduce two distinct timing analysis techniques: static analysis,
which focuses on static events and statements to identify timing
violations before simulation, and dynamic monitoring, which ob-
serves event execution during simulation to detect violations for
specific input sets. Both techniques offer unique advantages and
can complement each other to enhance productivity.

Static Analysis. Static statements refer to those whose contained
statements and events have a fixed sequence of cycles that can be
determined during elaboration. Static statements supported by the
ctrl sub-language, as presented in Table 3, include seq statements
without entry and exit events, seq or par statements containing
solely static sub-statements, and for or while statements with
static do_stmt and constant trip-counts.

Static analysis begins by identifying all static statements and
events within target modules, filtering out root statements or events
that are not contained or invoked by other static constructs. For
example, all statements and events in Figure 3a are static, while
none are in Figure 3b. The only root event in the static_m module
is io.go, which invokes the s_for statement. Subsequently, the
analysis employs a post-order traversal to determine the latency of
each statement by aggregating the latencies of its sub-statements,
following the formulas in the "Latency" row of Table 3.

The analysis initializes the cycle sequence for every root state-
ment or event as {1}, signifying execution in the first cycle. It then
proceeds with a pre-order traversal to infer the cycle sequence
for the remaining statements and events, guided by the formulas
presented in the "Cycle Inference" row of Table 3. Subsequently, the
analysis checks for timing violations. It iterates through all ports or
wires within the target modules, collecting the cycle sequences for
data reception and transmission for each one. By comparing them,
the analysis identifies timing violations when a mismatch occurs,
indicating either transmission of invalid data or data loss.

For instance, within the static_m (Figure 3a), sc[io.go] is
set as {1} for the root event io.go. Then, both the sc[s_pipe]
and sc[send_mul] are inferred as {1,2,3,4}, while sc[recv_mul] is
inferred as {3,4,5,6}. Assuming that the recv_mul event guards the
connection where the rst port of the submodule instantiated from
multiply_dsp with lat=3 transmits data to the current module, the
cycle sequence at which the rst port sends data is {3,4,5,6}, which
equals sc[recv_mul]. However, the cycle sequence at which the
rst port receives data, inferred within the multiply_dsp module,
is {4,5,6,7}. This mismatch indicates a timing violation.

The primary advantage of static analysis is its ability to detect
timing violations during elaboration, without requiring testbenches.
While this technique offers quicker violation feedback, its scope is
more limited, only encompassing static statements and events.

Dynamic Monitor. The dynamic monitor technique harnesses the
boolean signal format of events to oversee their execution during
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let s = stmt! {
seq { // seql
stepl;
i -
[cond] step2 stept i OXXXX

else par {
seq { // seq2 step
step3; step4

3
seq { // seq3 seq2 Seq3
step5; step6
3} h
synth!(s, GoDone::..); Step3 Step4 step5 Step

(a) ctrl sub-language and AST

OLeaf

1100x 1101x 110x0 110x1

(b) state tree representation

Youwei Xiao, Zizhang Luo, Kexing Zhou, and Yun Liang

100x 101x 10x0 10x1

(c) optimization

(d) optimized state tree

Figure 4: Construction and optimization of state tree representation

simulation. The process begins by collecting all events within the
target modules. For each event, the monitor introduces a boolean
signal denoting whether the event executes in the current cycle.
Additionally, the monitor generates two boolean signals for each
port or wire within the target modules: one indicating whether
the port or wire receives data in the current cycle and the other
signifying whether it transmits data during the current cycle. The
technique subsequently automatically devises combinational logic
for these generated boolean signals. Finally, the monitor incorpo-
rates assert statements into the produced hardware description
programs in SystemVerilog and identifies timing violations by as-
serting the mismatch of the two boolean signals for ports or wires
at each cycle during simulation.

The advantage of the dynamic monitor technique is its capa-
bility to detect timing violations in circuits with data-dependent
behavior, exemplified by the dyn_m module in Figure 3b. However,
it possesses the limitation of solely identifying violations based
on provided testbenches, and it introduces auxiliary signals that
impose computational burden during the simulation phase.

4.3 Control synthesis

We introduce the control synthesis algorithm to synthesize the
control logic from the ctrl sub-language of CMTHDL. It strictly
implements the specified timing behavior, and thus, keeps the cy-
cle determinism feature of CMTHDL to produce hardware of pre-
dictable performance. We describe the state tree representation that
supports the synthesis process, and its construction from the ctrl
sub-language. We then formulate an optimization problem to min-
imize the resource usage of the synthesized FSM and present the
optimization algorithm that modifies the state tree representation
to achieve the optimization target.

State tree representation. We propose the state tree representa-
tion to describe the relationship between events and their encoding
in the FSM. There are four kinds of nodes in a state tree: leaf, mutu-
ally exclusive, parallel, and pipeline. A leaf node is an event under
control. A mutually exclusive node indicates that only one of its
children is executed at a time. A parallel node indicates that all of
its children may be executed at the same time. A pipeline node is a
variation of the parallel node to deal with pipelining. As shown in
Figure 4a and Figure 4b, a state tree is constructed from an AST of
the ctrl sub-language. First, step statements are converted to leaf
nodes, par statements are converted to parallel nodes, and all the

other statements are converted to mutually exclusive nodes. Second,
connected nodes of the same type are merged. For example, the
seq1 and if node are merged into node b. Finally, protocol nodes
are added according to the synthesis configuration, such as the
mutually exclusive root node a and the leaf node @ that implement
the specified go-done protocol.

The state tree can decide the encoding of each leaf node. As
shown in Figure 4b, a mutually exclusive node assigns one distinct
binary encoding to each child, and a parallel node assigns one offset
to each child so that their encoding spaces do not overlap. The route
from the leaf node to the root decides its encoding. Take leaf node
5 as an example, node e assigns the postfix 0, node c offsets it by 1
to get x0, and from c to a it further gets 110 in the front to make
the final encoding 110x@. The pipeline node is treated specially,
it assigns a one-hot encoding to its children. As a result, a shift
register can enable different stages in the pipeline.

Optimization. The optimization space is the encoding of the mu-
tually exclusive nodes. As shown in Figure 4c, the encoding assign-
ment of node b can be represented in the form of a binary tree. The
child states are distinguishable as long as they occupy different leaf
nodes in the binary tree, and do not need to have equal lengths. By
modifying the shape of the binary tree, the total width of the state
is reduced from 5 to 4 as shown in Figure 4d.

The optimization target is to minimize LUT utilization under
constraints of limited FF utilization and frequency. The width of
the state register determines FF utilization, and the complexity of
combinational logic, including transition and output, determines
LUT utilization. Simply using one-hot encoding greatly simplifies
transition with the cost of an extremely wide state register, so a
constraint is added that the number of FFs is bounded by a constant
times the number of statements. For frequency constraint, we set
the upper bound for the number of cascade LUTs. Both the numbers
of the total LUTs and the cascade LUTs can be calculated from the
number of the bits in the state that are required for event triggering
and state transition.

We introduce a heuristic for the optimization. First, all nodes
are initialized to use the Huffman-tree-like scheme with the width
of their encoding in the sub-tree as sorting keys, where the child
node that needs more bits is closer to the root. Then the mutually
exclusive nodes are sorted by the height of the Huffman tree. From
tall to short, the encoding schemes of some nodes are changed to
one-hot to reduce LUT utilization until reaching the FF limitation.
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5 EVALUATION

Our evaluation consists of three parts. First, we evaluate CEMENT’s
performance by testing it with kernels from the PolyBench bench-
mark suite. CMTHDL provides cycle-deterministic descriptions for
inter-cycle hardware behavior, which requires the absence of extra
cycles in the produced circuits to guarantee the expected perfor-
mance, while the control synthesis algorithm of CMTC optimizes
the resource efficiency of the circuits. The kernels from the Poly-
bench have diverse behaviors in terms of computation and control,
such as branches and loops, which are qualified to compare the
performance and resource efficiency of the produced circuits and
verify the effectiveness of our methodology. We compare CEMENT
with the commercial HLS tool Vitis HLS [55] and the FPGA pro-
gramming DSL Dahlia [38] compiled by the Calyx [40] framework.
Then, we conduct a case study on systolic array accelerators to
demonstrate CEMENT’s benefits for real-world accelerator design.

5.1 Experiments on PolyBench

For our experiments with the PolyBench benchmark suite, we
compare cycle count, resource utilization, and lines of code (LoC)
for description!. We collect cycle counts by simulating the pro-
duced SystemVerilog code with Verilator[48] and estimate resources
by running synthesis with Vivado 2021.2, targeting Virtex Ultra-
Scale+ XCVU9P FPGA. For Dahlia-Calyx flow, we follow the instruc-
tions provided in the calyx-evaluation repository?. We collect cycle
counts by simulating designs in Verilator and estimate resources
using Vivado 2021.2 under the same configuration as CEMENT. For
Vitis HLS 2021.2, we collect the metrics including cycle count and
resource utilization from the co-simulation and implementation
reports. We set the target clock period as 7ns for Vitis HLS designs
while configuring the same target clock period for the synthesis of
CeMENT and Dahlia-Calyx for fair comparison.

Against Vitis HLS. Figure 5a shows that CEMENT designs use
fewer cycles for all the kernels. Considering frequency, CEMENT
designs achieve 1.41x geomean speedup compared to Vitis HLS
with loop pipelining and flattening disabled. CEMENT outperforms
Vitis HLS because Vitis HLS adopts conservative scheduling with
an approximate timing model, preventing designers from making
scheduling decisions and leading to poor performance. On the
contrary, CEMENT allows users to describe hardware behavior in a
cycle-deterministic manner. Take the "atax" kernel as an example,
its dot-product loop is scheduled to have an iteration latency of 4
cycles by Vitis HLS for the 7ns target clock period. This can not be
further optimized by directives from users. However, it’s convenient
to describe the control logic by a seq statement containing 3 steps
in the ctrl sub-language of CMTHDL, which achieves better latency
while meeting the timing target.

Moreover, CEMENT saves 23% LUTs and 68% FFs on average
due to the optimization effects of the control synthesis technique
(introduced in Section 4.3), and provides comparable productivity
(0.97x geomean LoC) against Vitis HLS designs, as shown in Fig-
ure 5b, Figure 5c, and Figure 5d. However, the CEMENT designs

"on

consume more LUTs for 6 kernels, namely "doitgen", "gesummv",

'We only take significant code into consideration for the LoC metric, excluding com-
ments, empty lines, and non-synthesizable code.
Zhttps://github.com/cucapra/calyx-evaluation
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"gramschmidt”, "lu", "symm", and "trmm". The reason is that CmTC
generates hardware solutions with the cycle-deterministic behavior
enforced by the CMTHDL specification, requiring extra overheads
for additional states and transitions in control logic. For kernels
with nested loops of multiple levels, such as the "doitgen" kernel
with 4-level nested loops, the overheads get accumulated and lead
to more resource consumption, especially for LUTs.

We further implement pipelined designs for 9 kernels in CEMENT
in the same manner as Figure 3a does. We compare them against
the Vitis HLS designs with pipelining enabled. Figure 6a shows that
CEMENT designs use fewer cycles on all the kernels. They achieve
1.52x geomean speedup considering the achieved frequencies. As
for resources, the CEMENT designs use fewer LUTs and FFs on most
of the kernels except the kernels "doitgen” and "gesummv". On
average, they save 47% LUT and 78% FF, while with only 0.95x
geomean LoC for description.

Against Dahlia-Calyx flow. We enable Calyx’s static timing op-
timization for the experiments. Figure 5a presents the performance
results. Considering the achieved frequency, CEMENT achieves 3.49x
geomean speedup against Dahlia-Calyx flow. The performance
gain stems from the control synthesis technique that guarantees
the expected timing behavior specified by the ctrl sub-language
of CMTHDL, which removes all the unnecessary cycles. Besides,
CEMENT designs save 54% LUTs and 82% FFs compared to Dahlia-
Calyx designs as shown in Figure 5b and Figure 5c. In addition,
Figure 5d shows that descriptions in CEMENT use 25% fewer lines
of code on average.

Summary. The results on PolyBench demonstrate that CMTHDL
provides similar-to-HLS productivity, and the CMTC compiler gen-
erates low-latency and resource-efficient circuits for most cases.

5.2 Case Study: Systolic Array

In this case study, we evaluate CEMENT for systolic array design
to demonstrate the practical significance of the cycle determinism
feature. Systolic array is the core component of various dataflow
accelerators[18, 25, 26, 28, 37]. Each tensor needs a schedule-specific
controller for its data movement into/from the array. Figure 7 shows
a schedule for matrix multiplication AXB = C, where task 1 preloads
tensor B into the array and keeps it stationary. Tasks 2-3 move
tensor A horizontally into the array in a systolic manner, and each
row is one cycle delayed after the previous one. Tasks 4-5 vertically
move tensor C out of the array.

CMTHDL's cycle-deterministic description and static timing anal-
ysis help to prevent cycle misalignment by detecting it as timing
violations as introduced in Section 4.2. An appropriate number of
padding cycles need to be added before each task. Figure 7 shows
an example of such cycle alignment. (a) To align task 1 and task 2,
the first data of tensor A reaches the systolic array at the exact cycle
when tensor B finishes moving into the array. (b) Task 3 is one cycle
delayed after 2 to skew the tensor. Task 4 and 5 are similar. (c) To
align task 2 and task 4, when the result reaches the edge of the array,
a partial sum of tensor C has just been loaded for accumulation.

We compare CEMENT against AutoSA[51] and EMS[26]. AutoSA
is a systolic array compiler that generates Vitis HLS code. We es-
timate its development effort according to the total size (35k) of
the definition code for the sub-modules such as PE. Though HLS
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Table 4: Comparison of systolic array hardware.

Design Device LUT DSP Frequency Throughput
AutoSA[51] U250 968k 9462 272MHz  949.98GFLOPS
EMS-WS[26] XCVU9P 898k 4494 301MHz  731.17GFLOPS
CeEMENT-small XCVU9P 437k 3840 322MHz  823.97GFLOPS
CEMENT-large XCVU9P 543k 4800 333MHz 1065.60GFLOPS

prevents cycle alignment bugs, the difficulty of describing spatial
hardware structure in HLS leads to more development effort. EMS
implements the systolic array using Chisel[3]. CMTHDL uses less
code (16.6KB) and development effort (2 person-months) than EMS
(36KB, 6 person-months).

In Table 4, we parameterize two CEMENT designs with different
systolic array sizes, namely CEMENT-small (32x40) and CEMENT-
large (40x40). CEMENT-small saves 51% LUTs and 15% DSPs com-
pared to EMS-WS, and improves 7% for frequency and 13% for
throughput, while CEMENT-large saves 44% LUTs and 49% DSPs
compared to AutoSA, and improves 22% for frequency and 12%
for throughput. In summary, CEMENT helps us to achieve better
accelerator designs with even less development effort.

6 CONCLUSION

We introduce the CEMENT framework as a better choice for FPGA
programming. It comprises the Rust-based eHDL CMTHDL, which
features the event-based extension for cycle-deterministic hard-
ware description by procedural statements, and the compiler CmTC,
which supports the timing analysis techniques and the control syn-
thesis algorithm. CEMENT is built around the Rust-native IR frame-
work ir-rs. We conduct experiments on PolyBench benchmarks to
demonstrate that CEMENT produces circuits of the expected per-
formance and efficient resource usage. The case study on systolic
array accelerators demonstrates CEMENT’s practical significance.
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