
Clay: High-level ASIP Framework for Flexible
Microarchitecture-Aware Instruction Customization

Weijie Peng§†, Youwei Xiao§†, Yuyang Zou‡, Zizhang Luo†, Yun Liang∗†
†School of Integrated Circuits, Peking University,‡School of Software and Microelectronics, Peking University

∗Institute of Electronic Design Automation, Peking University
{weijiepeng, shallwe}@pku.edu.cn, yyzou25@stu.pku.edu.cn, {semiwaker, ericlyun}@pku.edu.cn

Abstract—Application-specific instruction-set processors (ASIPs) pro-
vide energy-efficient acceleration for embedded systems and IoT devices.
The free and open RISC-V ISA promotes open-source ASIP solutions
to accelerate diverse application domains. Existing ASIP tools generate
hardware and software artifacts from high-level architecture description
languages (ADLs), however, they only support the in-pipeline coupling
strategy on specific processors. As a result, they suffer from two critical
limitations: they restrict instruction extensions to stateless behavior,
preventing hardware implementation of efficient control flow like loops,
and they impose rigid microarchitectural constraints that limit register
file and memory interactions. These restrictions create a fundamental
bottleneck in application acceleration and prevent the efficient deploy-
ment of custom instructions across different processors.

We introduce Clay, an open-source high-level ASIP framework
that overcomes these limitations. Clay introduces a unified instruc-
tion extension interface that abstracts different coupling strategies
as microarchitecture-agnostic actions and microarchitectural attributes.
Clay ADL (CADL) combines the interface actions and high-level syntax
to describe general instruction behavior, which can be stateful. We
further propose a microarchitecture-aware synthesis flow that selects
the best coupling strategy for each custom instruction and schedules
the optimal implementation with microarchitectural attributes modeled
as constraints. Our evaluation of diverse workloads demonstrates that
Clay delivers substantial performance improvements across two RISC-V
processors, our custom Clay-core and the open-source Rocket-core.

I. INTRODUCTION

Compute-intensive applications in modern embedded systems and
Internet-of-Things (IoT) devices necessitate efficient hardware accel-
eration. Application-Specific Instruction-set Processors (ASIPs) [17]–
[19], [24] offer a balanced solution by extending existing Instruction
Set Architectures (ISAs) with custom instructions that accelerate
critical operations while maintaining software compatibility. With
its modular design and explicit support for extensions, the free
and open RISC-V ISA has become a popular foundation for such
customization. Emerging research has leveraged RISC-V to create
custom ASIPs for accelerating various domains, such as digital signal
processing [15], artificial intelligence [5], [38], cryptography [9],
[21], and bioinformatics [22], presenting needs for a unified open-
source RISC-V ASIP framework.

Despite growing ASIP adoption, current approaches suffer from
significant limitations. Existing ASIP frameworks like Codasip Stu-
dio [10] and Longnail [27] only support the specific coupling strategy,
in-pipeline coupling, which binds functionality of custom instructions
to different stages of the main processor pipeline. This approach
is efficient for combinational custom instructions, but suffers from
two critical constraints that limit their application scope, as shown
in Figure 1. First, they cannot support stateful instruction behavior,
preventing the implementation of arbitrary control flow as finite-state
machines in hardware. While some Architecture Description Lan-
guages (ADLs), such as Codasip’s CodAL and Longnail’s CoreDSL,

§
These authors contributed equally to this work∗
Corresponding author

let src = rf[rs1];

let dst = rf[rs2];

let n = funct7;

for (i=0;i<n;i++) {

 mem[dst]=mem[src]+mem[src+4];

 src += 8; dst += 4;

}

μarch-aware impl

Codasip
Longnail

Instruction Behavior

μarch constraints:
#mem-rd/wr-port

Clay
(our work)

stateful behavior:
loop of variable trip-count

CFU μarch0it
fc

COP μarch1it
fc

Fig. 1: Clay overcomes the limitations of existing ASIP frameworks.

allow control flow description in instruction behavior, they restrict it
to constant trip-counts and conduct loop unrolling before hardware
generation to meet the requirements of the in-pipeline coupling. Sec-
ond, these frameworks impose rigid microarchitectural constraints,
such as restricting the number of register and memory operations per
custom instruction, allowing for at most two register operands and
one memory access due to the limited microarchitectural capabilities
provided by the in-pipeline coupling strategy. These constraints
further restrict the custom instruction behavior. For example, the
stream-style instruction behavior in Figure 1 contains a stateful loop
with multiple memory accesses. Such stateful and memory-intensive
behavior patterns are quite common in diverse domains, including
machine learning and digital signal processing, and require manual
efforts [14], [28], [29] to be implemented into custom instructions
due to the incapability of existing ASIP frameworks [8], [10], [27],
[32].

To address these limitations, we present Clay, a novel RISC-V-
based high-level ASIP framework that supports multiple coupling
strategies, enables stateful custom instructions, and synthesizes im-
plementations that fully exploit the target processor’s microarchitec-
tural capabilities. Specifically, Clay introduces a unified instruction
extension interface that abstracts both the in-pipeline coupling and
coprocessor coupling into microarchitecture-agnostic actions and
underlying microarchitectural attributes. Clay provides a high-level
Clay Architecture Description Language (CADL) that combines
the microarchitecture-agnostic actions and high-level control flow
statements in its syntax, enabling the description of general custom
instruction behavior. With CADL, designers can describe custom
instructions with arbitrary stateful behaviors and register and mem-
ory accesses as exemplified in Figure 1, without microarchitectural
constraints imposed by Longnail instructions [27].

For instruction implementation, Clay proposes a microarchitecture-
aware synthesis flow that selects the appropriate coupling strategy
for each custom instruction and synthesizes efficient hardware imple-
mentation concerning target processor features abstracted as microar-
chitectural attributes in the unified instruction extension interface.
Clay formulates scheduling as an integer linear programming (ILP)

20
25

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
O

n
C

om
pu

te
r A

id
ed

 D
es

ig
n

(I
C

C
A

D
) |

 9
79

-8
-3

31
5-

15
60

-7
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
A

D
66

26
9.

20
25

.1
12

40
66

9

Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 07:29:44 UTC from IEEE Xplore. Restrictions apply.

problem, modeling microarchitectural attributes as constraints and
generating hardware implementations from the optimal solutions. By
doing so, Clay can always pick the appropriate coupling strategy and
generate an efficient implementation when a custom instruction is
deployed on different RISC-V processors.

The contributions of this paper are:
• An open-source1 high-level RISC-V ASIP design framework

composed of ADL and compiler to implement flexible custom
instructions in different coupling strategies.

• A unified instruction extension interface and high-level ADL
description, jointly enabling the description of arbitrary stateful
instruction behavior without microarchitectural constraints.

• A microarchitecture-aware synthesis methodology that selects
the appropriate coupling strategy for each custom instruction and
synthesizes efficient hardware with respect to microarchitectural
features of the target RISC-V processor.

The experimental results demonstrate that Clay delivers substantial
performance improvements—up to 203× on individual kernels and
34× on real-world workloads—across two RISC-V processors with
different coupling strategies and microarchitectural configurations:
our custom Clay-core and the open-source Rocket-core. We dis-
cuss the effectiveness of Clay’s stateful instruction behavior support
and microarchitecture-aware synthesis methodology with comprehen-
sive consideration of the performance and hardware overhead.

II. PRELIMINARIES

A. Instruction Extension Interface

RISC-V’s modular design has revitalized interest in Application-
Specific Instruction-set Processors (ASIPs). There are two primary
coupling approaches for custom instructions: in-pipeline coupling
and coprocessor coupling, as illustrated in Figure 2. This paper
does not discuss off-chip accelerators [20], [23] coupled via Memory
Mapped IO (MMIO) or other interfaces due to their high latency and
area/power costs. For on-chip custom instructions, in-pipeline cou-
pling reuses the existing control and datapaths of the main processor
pipeline, using a very lightweight interface to deliver data between the
main processor and the custom function unit across different stages.
Coprocessor coupling, on the other hand, adopts the request-response
interface for offloading and synchronization. Coprocessors have self-
contained control and datapaths. These approaches achieve different
trade-offs: in-pipeline coupling is lightweight and efficient, especially
suitable for combinational custom instructions, while coprocessor
coupling is more flexible and scalable to support complex control
flows and memory accesses.

Instruction extension interfaces are indispensable for custom in-
structions of both coupling approaches. Different processor cores
typically provide their specific interfaces. For example, Cadence Ten-
silica [8], Synopsys ASIP Designer [32], Codasip [10], and Andes [4]
provide closed-source interfaces that support in-pipeline coupling but
only target their processor IPs, while open-source solutions, such
as the NICE interface of the Hummingbirdv2 E203 core [25], the
Core-V eXtension Interface [26] of the CV32E40X processor, and the
RoCC interface of the Rocket core [6], support coprocessor coupling.
SCAIE-V [13] provides a portable interface across diverse cores, but
it only supports in-pipeline coupling with strict constraints on the
instruction behavior, such as allowing only one memory access per
instruction, even in its decoupled mode. Clay’s instruction extension
interface abstracts the microarchitectural details of different cores
while supporting both coupling approaches.

1https://github.com/pku-liang/clay

cache/memory

IF D EX M WB
Base
Processor

CFU RTL

In-Pipeline Interface1

COP

RTL

Req.

Resp.

Coprocessor
Interface2

HLS
3

4

1 [13] 2 [6], [25], [26] 3 [10], [27] 4 [7]
Fig. 2: Instruction extension interface and HLS’s role.

B. High-level Synthesis of Custom Instructions

Although instruction extension interfaces provide mechanisms for
adding custom instructions, describing the hardware implementation,
especially when handling interaction signals with the processor core,
remains verbose and error-prone. High-level synthesis (HLS) [12],
[37] tools can save such human efforts by automatically generating
hardware implementations from behavioral descriptions. For example,
Longnail [27] provides a closed-source parameterized HLS flow that
generates custom instructions that implement the SCAIE-V interface.
In contrast to traditional HLS flows [30] that generate standalone
accelerator modules, Longnail additionally models the SCAIE-V
operations, such as register file access and memory-stage operations,
which have microarchitecture-specific timing constraints, to imple-
ment the in-pipeline coupling interface correctly. However, Longnail’s
applicability is restricted to SCAIE-V’s in-pipeline coupling target;
for example, it cannot synthesize custom instructions with complex
control flows and multiple memory operations. On the other hand,
Accelerate-HLS [7] targets a request-response-based coprocessor
coupling interface, and can synthesize custom instructions of general
control flows and memory operations. However, its heavy interface
is inefficient for simple custom instructions, such as pure arithmetic
operations. Besides, its synthesis algorithm is not microarchitecture-
aware, presuming fixed microarchitectural resources like memory
access units, restricting the acceleration potentials. Moreover, it is
also closed-source and only supports Bluespec processor IPs.

Clay’s HLS flow targets a unified instruction extension interface
that supports both coupling approaches. It automatically synthesizes
implementations that can either be efficiently in-pipeline coupled or
be a coprocessor that implements general control flows and memory
accesses, according to the specified instruction behavior and the target
processor’s microarchitectural capabilities. Clay is the first open-
source HLS-based ASIP framework that supports microarchitecture-
aware instruction synthesis targeting flexible coupling strategies on
RISC-V processors.

III. METHODOLOGIES

A. Overview

Figure 3 presents the overview of Clay framework. At the center is
the Clay instruction extension interface, which abstracts the interac-
tion between the custom instruction and the base processor as actions
for different coupling strategies in a unified manner. Each action is
associated with a set of microarchitectural attributes, which describe
the timing and resource constraints of the action provided by the
target processor. The Clay ADL (CADL) serves as the frontend of
Clay, providing a high-level language to describe custom instructions
in a microarchitecture-agnostic manner. For every custom instruction,
the CADL describes its encoding and behavior. In addition to
computation operations, instructions in CADL also contain interface
operations that correspond to the actions in the Clay instruction ex-
tension interface, describing how the custom instruction interacts with
the base processor. CADL also provides control flow statements to
describe general stateful behavior. Clay’s synthesis flow takes CADL

2
Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 07:29:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Clay instruction extension interface. Each Clay ADL (CADL) operation is associated with one or a pair of interface actions. Every
action has arguments and return values. There are two types of microarchitectural attributes: timing and resource.

CADL Operation µarch-Agnostic Action Description Additional Microarchitectural Attributes

value=rf[idx]
RegRdReq(idx)->(token)

Send request to read the value of
GPR/CSR indexed by idx

Latency. Stage range. Maximum number of RF reads
per cycle/instruction.

RegRdResp(token)->(value)
Receive the value of GPR/CSR
from the read request token

Stage range. Maximum number of RF reads per
cycle/instruction.

rf[idx]=value RegWrReq(idx,value)
Send request to write the value
of GPR/CSR indexed by idx

Latency. Stage range. Maximum number of RF
writes per cycle/instruction.

value=mem[addr]
MemRdReq(addr)->(token)

Send request to read the value of
memory at addr

Latency. Stage range. Maximum number of memory
reads per cycle/instruction.

MemRdResp(token)->(value)
Receive the value of memory
from the read request token

Stage range. Maximum number of memory reads per
cycle/instruction.

mem[addr]=value MemWrReq(addr,value)
Send request to write the value
of memory at addr

Latency. Stage range. Maximum number of memory
writes per cycle/instruction.

updatePC(pc,cond) PCUpdate(pc,cond)
Send request to update the PC
with pc if cond holds

Only available for in-pipeline integration (at most
one per instruction).

Clay Instruction

Extension Interface

Clay ADL Frontend

(CADL)

* Abstracted actions

* μarch attributes

* Instruction encoding
* Instruction behavior
 1. interface operation
 2. control flow

Base

Processor

Synthesizer
* Stateful synthesis

* μarch-aware schedule

CFU Itfc

COP Itfc

ASIP Solution

composeμarch-agnostic, high-level input

abstractμarch constraints

Fig. 3: Overview of the Clay framework

description as inputs and implements each custom instruction in
an automatically selected coupling strategy, producing the complete
ASIP design. The synthesizer not only generates finite-state machines
(FSMs) for stateful instructions, but also conducts microarchitecture-
aware scheduling by modeling the microarchitectural attributes as
constraints, maximizing the instruction’s performance towards the
target RISC-V processor.

B. Unified Instruction Extension Interface

Clay instruction extension interface abstracts different coupling
strategies of any target processor into microarchitecture-agnostic
actions and microarchitectural attributes on the actions, as listed in
Table I. The actions provide the primitive operations that custom
instructions can perform to interact with the base processor without
considering microarchitectural details. The interface allows each cus-
tom instruction to access more registers without being restricted to the
rs1, rs2, and rd fields in the RISC-V instruction format, eliminating
fixed constraints. This flexibility is essential for the CADL frontend
to describe arbitrary instruction behavior. The microarchitectural
attributes, on the other hand, provide necessary information for the
synthesizer to select the appropriate coupling strategy and generate
microarchitecture-aware implementation to optimize the performance
and hardware overhead of the custom instruction.

To represent processor behaviors that can be combinational, multi-
cycle, or latency-insensitive across different coupling strategies and
processor implementations, the Clay instruction extension interface
adopts a request-response mechanism: both the action RegRdReq and

MemRdReq are request actions that initiate the operation and return a
token as a handle to retrieve the result later; the action RegRdResp
and MemRdResp are the response actions that consume the token and
get the result value. For other actions without returning values, such
as RegWrReq, MemWrReq, and PCUpdate, we omit the response action
for simplicity.

Table I presents two types of microarchitectural attributes for
different actions. The timing attributes describe the required latency
or the legal pipeline stages for the action. In contrast, the resource
attributes describe the maximum number of a specific type of actions
that can be executed concurrently. The response actions do not
have the execution latency attribute, since their latency is counted
in the corresponding request action. The PCUpdate action has a
special attribute that restricts it to in-pipeline coupling only, with a
maximum of one PCUpdate allowed per instruction. These attributes
are microarchitecture-specific and not exposed to CADL.

C. High-level Architecture Description Language

To describe instructions at a high level to ease the instruction cus-
tomization task, we propose Clay Architecture Description Language
(CADL). CADL describes custom instructions’ encoding, states (cus-
tom registers or scratchpad memory), and behavior. We focus on
CADL’s behavior description. In addition to general computation
operations, CADL supports interface operations to describe the
interaction with the base processor and control flow statements to
describe general stateful behavior.

1) Interface operations without microarchitectural constraints:
CADL provides a set of interface operations to describe custom in-
structions’ register file access, memory access, and PC update behav-
ior, all of which are straightforwardly mapped to the corresponding
one or pair of actions in the Clay instruction extension interface, as
listed in Table I. Since the interface actions are microarchitecture-
agnostic, the CADL description is also microarchitecture-agnostic,
allowing describing custom instructions without considering microar-
chitectural constraints and targeting different coupling strategies and
processors. Furthermore, CADL omits the request-response mecha-
nism for a more brief description. The rationale is that CADL only
describes the high-level untimed behavior of instructions, and all the
operations can be abstracted as instantly executed, without the need
for splitting into request and response.

2) Stateful behavior description: CADL supports general control
flow statements, including if, for, and while, to describe the stateful
behavior of custom instructions. CADL does not require the trip
count of the for-loop to be known at synthesis time for forced loop

3
Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 07:29:44 UTC from IEEE Xplore. Restrictions apply.

#[opcode(7'b0101011)]
#[funct3(0x3)]
rtype stream_add
(rs1,rs2,funct7)->(rd){
 let s = rf[rs1];
 let d = rf[rs2];
 let n = funct7;
 for(var i=0;i<n;i=i+1){
 mem[d]=mem[s]+mem[s+4];
 s += 8; d += 4;
 }
}

stream_add: {
identification:
 inst[6:0]==7'b0101011
 && inst[14:12]==0x4
decode: {
 rs1=inst[19:15]
 rs2=inst[24:20]
 funct7=inst[31:25]
}
behavior: {
 CDFG: { .. }
}

init loop done
cond

!cond

init: {
s=RegRdResp(RegRdReq(rs1))
d=RegRdResp(RegRdReq(rs2))
n=funct7; i=0; cond=0<n
}
loop: {
v0=MemRdResp(MemRdReq(s))
v1=MemRdResp(MemRdReq(s+4))
MemWrReq(d, v0+v1)
s=s+8; d=d+4
i=i+1; cond=i+1<n
}

(a) CADL Input (b) HIR
Parse

loop: {
II: 2,
s0: t0=MemRdReq(s)
 s'=s; s=s+8; i=i+1
 t0'=t0; cond=i+1<n
s1: t1=MemRdReq(s'+4)
 v0=MemRdResp(t0')
 t1'=t1; v0'=v0;
s2: v1=MemRdResp(t1')
 MemWrReq(d,v0'+v1)
 d=d+4
}

(c) LIR
Schedule

init[idle&enable] {}

(d) RuleIR → RTLImplementation

s0[c0] {}

s1[c1] {}

s2[c2] {
 v1=MemRdResp(t1')
 MemWrReq(d,v0'+v1)
 d=d+4
}

t1' v0'

FSM[true] {}

μarchitecture-agnostic μarchitecture-specific
Fig. 4: Code transformation from CADL input to multi-level IRs through parsing and synthesis. Data types are omitted for brievity.

Algorithm 1: Coupling strategy selection and scheduling
Data: custom instruction set C, coupling strategies I
Result: schedule set S

1 Function Synthesis (C, I):
2 for custom instruction ci ∈ C do
3 for coupling strategy cs ∈ I do
4 get µarch attributes A from cs;
5 if µarchSanityCheck (ci, A) then
6 schedule s← Schedule (ci, A);
7 if schedule s is feasible then
8 S.insert(s);
9 break // explore next ci

10 return S

unrolling. Instead, a CADL for-loop can take a decoded variable or
even a Control and Status Register (CSR) value as the loop bound.
This is essential for Clay to describe stateful custom instructions
implemented as a coprocessor, which can be configured through the
instruction encoding or CSR and runs along with the main processor
pipeline.

Combining the microarchitecture-agnostic interface operations and
the general control flow statements, CADL is capable of describing
arbitrary instruction behavior. Figure 4a presents an example CADL
description for the custom instruction stream add. For encoding, the
instruction is specified to be an R-Type RISC-V instruction, with
opcode and funct3 used for identification. It uses the decoded value
of fields rs1, rs2, and funct7 in the behavior description, where
func7 determines the for-loop’s bound, and rs1 and rs2 specify
the register indices of the initial memory address of the source and
destination streams, respectively.

The CADL description is parsed and transformed into a high-level
intermediate representation (HIR) for the Clay compiler to further
synthesize. Figure 4b presents the HIR for the stream add instruction,
where the identification condition and the decoding logic are explic-
itly described, and the behavior is specified as a control and data
flow graph (CDFG). In the CDFG, CADL’s interface operations are
transformed into actions in the Clay instruction extension interface.
Program transformations such as if-conversion [2] and user-directed
loop unrolling are conducted on the HIR to prepare for the synthesis.

D. Microarchitecture-aware Synthesis

The Clay compiler further conducts synthesis to select the best
coupling strategy and generate microarchitecture-aware low-level IR
(LIR). The synthesis algorithm is presented in algorithm 1. In addition
to a set of custom instructions to synthesize, denoted as C, the
synthesizer also takes the candidate coupling strategies I as input.
The possible coupling strategies are in-pipeline, coprocessor, or both,
depending on the target processor’s supporting situation. For every
specific coupling strategy cs, it specifies the required microarchi-
tectural attributes, denoted as A, on interface actions, as shown in
Table I. These attributes will be essential in the scheduling algorithm
to produce microarchitecture-aware instruction implementation.

In algorithm 1, the synthesizer iterates over all the custom instruc-
tions (line 2) and tries the coupling strategies one by one in a priority
order for every instruction (line 3). Typically, the synthesizer will first
try the in-pipeline strategy if the processor supports it, as it is more
area-efficient, and will fall back to the coprocessor strategy if the
in-pipeline is infeasible. For every coupling strategy, the synthesizer
extracts the microarchitectural attributes (line 4) and conducts a fast
sanity check (µarchSanityCheck, line 5) to ensure the instruction is
possible to be scheduled on the chosen coupling strategy. There are
two rules for the sanity check: for in-pipeline coupling, the CDFG of
the instruction cannot have multiple basic blocks, since the instruction
implementation should reuse the pipeline stages’ control logic, which
does not support the complex control flow; for coprocessor coupling,
the action PCUpdate should not be used in the instruction, since the
coprocessor is far away from the PC update logic. If the sanity check
passes, the synthesizer will try scheduling the custom instruction on
the coupling strategy (Schedule, line 6).

1) Synthesizing stateful behavior: For custom instructions whose
CDFG contains multiple basic blocks, indicating the instruction has
stateful behavior, the synthesizer will schedule the basic blocks
individually and generate a finite-state machine (FSM) to implement
the control flow represented by transitions among the basic blocks.
Here we introduce how the synthesizer schedules each basic block.
For coprocessor coupling, we consider the modulo scheduling for
innermost loop body basic blocks with an incrementally increasing
initial interval (II), and normal scheduling without II consideration
for other basic blocks. For in-pipeline coupling, we only consider
the normal scheduling without II consideration. We formulate both
scheduling problems as a unified integer linear programming (ILP)
problem with the variables and constants defined in Table II, as well
as objectives and constraints listed in Table III, generally according

4
Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 07:29:44 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Variables and constants of ILP formulation

Variable Description
xs,i whether operation i is scheduled at stage s?
si the scheduled stage of operation i

li the lifetime of operation i’s result
Constants In-pipeline-specific Coprocessor-specific
di,j whether operation i and j have data dependency
p / whether modulo scheduling?
disti,j / inter-iteration dependency distance
S µ processor pipeline stages scheduling stages
Li

µ latency of operation i

Ri
µ legal stage range /

cr µ microarchitectural resource constraints
ui,r

µ whether operation i uses resource r?

µ indicates microarchitecture-specific constants.

TABLE III: Objectives and constraints of ILP formulation

Name Expression
Objective minimize αM + β

∑
i∈V

wili

Dependency Constraints sj + p× disti,j × II ≥ si + Li

Resource Constraints

∑
kt∈S

∑
i∈V

ui,rxkt,i ≤ cr (if p)∑
i∈V

ui,rxs,i ≤ cr (if not p)

Lifetime Constraints sj + p× disti,j × II − si − Li ≤ li

Interval Constraints si ∈ Ri

Schedule Once
∑
s∈S

xs,i = 1

Overall Latency M ≥ si + Li

to their classic formulations. The rationale of selecting the ILP
formulation is two-fold: first, the problem scale is manageable since
the overall chip area limits the number of operations in a custom in-
struction, and modern ILP solvers such as Gurobi [16] can efficiently
find the optimal solution; and second, microarchitecture features
are modeled as resource constraints and ILP-based scheduling can
discover the optimal resource-constrained solutions, more suitable for
our design goal than other scheduling approaches [11], [39].

2) Modeling microarchitecture in scheduling: Clay’s scheduling
algorithm tries to find a legal schedule of the best performance
and area efficiency when targeting a specific coupling strategy
and microarchitecture. The key is to model the microarchitectural
information in the scheduling formulation. We therefore convert
both the timing and resource microarchitectural attributes from the
Clay instruction extension interface (Table I) into microarchitecture-
specific constants shown in Table II. The latency attributes of actions
are converted into the latency constants Li of the operation i. The in-
pipeline-specific stage range attributes, specifying the legal processor
pipeline stages for an action to be scheduled, are converted into the
stage range constants Ri. And the resource attributes are converted
into the resource limit constants cr , and the usage constant ui,r is
set high to indicate the corresponding operation i’s usage of resource
r. A special case in microarchitecture modeling is the handling
of response actions (such as MemRdResp in Figure 4b), which lack
latency attributes as shown in Table I. We model them as Lresp=0,
and their scheduled stage will be determined considering the latency
of the corresponding request action as well as the data dependency
between the request and response actions.

The microarchitecture-specific constants have an essential impact

RdReq0

RdReq1

RdResp0 RdResp1

WrReq

RdReq0

RdReq1

RdResp0 RdResp1

WrReq

for i = 0 to n

...

fully utilize dual
memory ports

II=2

Latency=2n+1

(a) μarchitecture1:
dual-port memory

(1R1W)

RdReq0

RdReq1

RdResp0 RdResp1

WrReq

RdReq0

RdReq1

RdResp0

for i = 0 to n

...
II=3

Latency=3n

(b) μarchitecture2:
single-port memory

(RoCC)

resource

constaints!

Fig. 5: Microarchitecture-aware scheduling of stream add

on the ILP problem by participating in the constraints, as shown
in Table III. Specifically, the latency constant Li is involved in the
dependency constraints, indicating that the operation j cannot start
before the operation i finishes. The stage range constant Ri is used in
the interval constraints, which forces the scheduled stage of operation
i to be within the range. The resource constraints are also affected by
the microarchitecture-specific constants, as the resource limit constant
cr specifies the maximum number of microarchitectural resources that
can be used per cycle.

Example of microarchitecture-aware scheduling: Figure 5 presents
the scheduling solutions for the stream add custom instruction de-
scribed in Figure 4b, under two different microarchitecture config-
urations. Since the instruction behavior is stateful, the synthesizer
only tries the coprocessor coupling strategy and conducts modulo
scheduling for the loop body basic block. Figure 5 only presents
the scheduling situation of memory access operations. For the dual-
port memory configuration in Figure 5a, the ILP formulation includes
two resource constraint constants crd and cwr , both of which are 1,
indicating there are two independent ports, one for read and the other
for write, available at the same cycle. The ILP solution schedules the
memory write operation in the current iteration and the first memory
read operation in the next iteration in the same cycle, leading to
the optimal II of 2 and the minimal latency of 2n + 1 for the
stream length n. For the single-port configuration in Figure 5b (which
reflects the RoCC coprocessor interface detailed in Section IV-A), the
ILP formulation includes just one resource constraint constant crdwr

set to 1, with both memory read and write operations using this
resource as indicated by the u constants. The ILP solver only finds the
feasible solution with II of 3 due to the resource constraint, and the
latency becomes 3n. The difference in II and latency demonstrates the
microarchitecture-awareness of our scheduling algorithm, which tries
to find the optimal legal schedule for different microarchitectures. The
schedule results are represented as LIR. Figure 4c presents the LIR
for the stream add custom instruction targeting the microarchitecture
configuration in Figure 5a.

E. Hardware Implementation

The Clay compiler generates the hardware implementation from
the synthesis results in the LIR format. The implementation process
comprises two steps: behavior implementation, constructing hard-
ware to implement the custom instruction behavior, and interface
implementation, building the interface logic to connect the custom
instruction hardware to the base processor.

1) Behavior implementation: In LIR, Clay’s synthesis has sched-
uled each basic block into a set of stages according to the selected
coupling strategy and the target microarchitecture. To implement the
scheduled behavior, we first translate each scheduled basic block into
a set of rules, where each rule corresponds to a scheduling stage and

5
Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 07:29:44 UTC from IEEE Xplore. Restrictions apply.

(a) in-pipeline

cache
IF D EX M WBCPU

Core

<<
+

1
rs1

rs2

(b) coprocessor

RegRdResp

MemRdReq

MemRdResp

MemWrReq

s0

s1

s2

init

FSM

enable
finish

RegRdRespRegWrReq

Fig. 6: Implementation for different coupling strategies

contains the operations scheduled to that state, composing the RuleIR
in Figure 4d. Data dependencies exist between operations in different
rules, such as variables t1’ and v0’, which are produced in rule s1
and consumed in rule s2. The Clay compiler instantiates necessary
pipeline registers to deliver data between rules.

Implementing stateful behavior: Since the coprocessor coupling
strategy allows custom instructions to have stateful behavior, the Clay
compiler must generate finite-state machines (FSMs) to implement
the control flow represented by transitions among the basic blocks. As
shown in Figure 4d, each rule is associated with a guard condition,
specifying the FSM state at which the rule is executed. The state
transition logic is implemented in the generated rule FSM, whose guard
is always true and calculates the next state based on the current state
and the transition condition specified in the instruction’s CDFG.

2) Interface implementation: Rules in the RuleIR contain oper-
ations that correspond to the interface actions, such as MemRdResp
and MemWrReq in the s2 rule in Figure 4d. These interface actions
exchange data between the custom instruction and the base processor,
whose implementation differs for different coupling strategies to
provide the necessary hardware functionality.

a) In-pipeline interface: Scheduling stages represented as rules
in the RuleIR format are bound to the processor pipeline stages.
Since the microarchitectural attributes on the interface actions are
considered in the scheduling problem formulation, the rules must
satisfy the interval constraints, guaranteeing that each interface action
must be bound to the correct processor pipeline stage. Therefore,
implementing an in-pipeline interface is straightforward: connecting
wires that the main processor exposes for interface actions with the
wires that the custom instruction requires for using the interface
actions. For example, Figure 6a illustrates the implementation of
a custom instruction calculating (rs1<<1)+rs2 that is in-pipeline
coupled. The processor pipeline specifies that the action RegRdResp
is provided at the decode (D) stage and the action RegWrReq is
only provided at the write-back (WB) stage. The custom instruction
is scheduled across three clock cycles, retrieving the operand value
from the decode stage and returning the result value to the write-
back stage, with pipeline registers instantiated to provide the correct
timing, as illustrated in Figure 6a.

b) Coprocessor interface: When a custom instruction is im-
plemented as a coprocessor, it implements the request-response
mechanism to conduct the interface actions to exchange data with the
main processor. Figure 6b presents the stream add custom instruction
implemented as a coprocessor. When its rule s2 is executed according
to the FSM, the custom instruction will retrieve a MemRdResp response
from the main processor and send the computation result as a
MemWrReq request to the main processor, according to Figure 4d. The
custom instruction hardware and the main processor must implement
the same coprocessor interface to achieve coordinated functionality.
For example, when Clay synthesizes the stream add custom instruc-
tion to the Rocket-core, both the custom instruction hardware and
the Rocket-core adopt the RoCC interface to achieve the request-

response mechanism. The major challenge for custom instruction
hardware in implementing a coprocessor interface is that it must
provide the capability to tolerate unpredictable response latencies.
For example, in Figure 4d, the rule s2 must wait for the MemRdResp
response to execute the remaining operations, whose arrival timing
depends on the cache behavior when targeting the Rocket-core. We
implement a latency-insensitive stalling mechanism in the FSM of
the custom instruction hardware to wait for required responses.

3) RTL generation: The Clay compiler translates rules in RuleIR,
as shown in Figure 4d, to the description in the rule-based hardware
description language cmt2 [35], [36]. The stalling mechanism is also
implemented in cmt2 to provide latency insensitivity for rules’ exe-
cution. Finally, SystemVerilog descriptions of the custom instructions
are generated through cmt2’s elaboration and compilation flow.

IV. EVALUATION

A. Evaluation Setup

1) Base processors: We evaluate Clay on two RISC-V processors,
in-house Clay-core and open-source Rocket-core, which support
different coupling strategies and have diverse microarchitecture con-
figurations. Clay-core is a 5-stage fully-bypassed pipelined proces-
sor based on RV32I ISA. Clay-core implements a cacheless design
with physically separated memory load/store channels, completing
every memory operation in one clock cycle. Rocket-core, generated
by the Chipyard [3] framework, implements the RV32IMAC ISA
with a 5-stage fully-bypassed pipeline architecture. It features the
built-in multiplier function unit (FU) and cache hierarchy, where the
data cache employs a shared memory channel for both read/write
requests, which is latency-insensitive. Clay-core supports both in-
pipeline and coprocessor coupling, while Rocket-core only supports
coprocessor coupling through the RoCC interface.

2) Custom instructions for evaluation: We implement a set of
custom instructions across diverse application domains for evaluation.
Table IV presents that the custom instructions require different
CADL features for description. Among them, simd and complex mul
are combinational computations with bit-select and concatenation
operations, sbox queries a constant lookup-table, autoinc contains
a custom register and conducts memory access, crc and cordic
require multiple loop iterations where loop unrolling is optional by
user directives, and gemm2x2 and stream add include more memory
access operations than that conventional processor pipelines’ memory
stage provides, requiring coprocessor coupling and microarchitecture-
aware synthesis. All custom instructions follow the standard RISC-V
R-type instruction encoding format. Table IV also presents the lines
of code (LOC) required to describe each custom instruction in CADL.
With the exception of sbox, which requires 256 lines for its constant
lookup table, all other custom instructions can be described within 30
lines, demonstrating the productivity of high-level CADL. Moreover,
Clay produces RTL design for every evaluated custom instruction
within one second, demonstrating the efficiency of the ILP-based
synthesis flow.

3) Methodology: In addition to the CADL description, we also
program the custom instructions’ behavior as C functions, which
are compiled using GCC with the -O2 compilation flag enabled. We
conduct cycle-accurate simulation with Verilator 5.034 [33] for both
base processors to quantify the execution cycles with and without
the custom instruction acceleration. All cycle data is collected after
cache warm-up. We also collect the timing and area data with Clay-
synthesized custom instruction integrated. We employ the Open-
ROAD open-source ASIC flow with Yosys 0.46 [34] and OpenROAD
v2.0-15774 [1] for logic synthesis and place-and-route, targeting the

6
Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 07:29:44 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Custom instructions for evaluation.

Custom
instruction Behavior description CADL features required CADL LOC

simd SIMD instructions for vector add Bit-select and concatenation, register access 10
complex mul Complex multiply using four parallel multiplier Arithmetic operations, bit-select and concatenation, register access 11

sbox S-box for AES encryption/decryption Constant lookup-table, register access 262
autoinc Auto-increment addressing for load/store instructions Custom register, memory access, register access 7

crc CRC hash algorithm Control flow (for), bitwise operations, register access 10
cordic Fixed-point sin/cos/arctan implemented with CORDIC

algorithm
Control flow (if, for), signed arithmetic, shift operations, register
access

26

gemm2x2 2x2 matrix multiplication from and to memory Arithmetic operations, memory access, register access 21
stream add Streaming pairwise reduction a[i]=b[i*2]+b[i*2+1] Control flow (for), memory access, register access 11

TABLE V: Performance and hardware overheads of custom instructions across two RISC-V processors: Clay-core (ClayC) and Rocket-core
(Rocket). For coupling strategies, ip denotes in-pipeline coupling and cop denotes coprocessor coupling.

Custom
instruction

#Cycle (original) #Cycle (optimized) %Cycle (reduction) Speedup Period Area Coupling

ClayC Rocket ClayC Rocket ClayC Rocket ClayC Rocket ClayC Rocket ClayC Rocket ClayC Rocket

Base / / / / / / / / 1.16ns 1.68ns 20137µm2 50941µm2 / /

simd 20 18 1 6 -95.0% -66.6% 20.0× 2.8× -0.2% +5.7% +2.5% +10.6% ip cop

complex mul 283 38 1 4 -99.6% -89.0% 203.2× 9.3× +39.3% +2.5% +19.2% +23.7% ip cop

sbox 4 8 1 6 -75.0% -25.0% 4.0× 1.3× -0.3% +2.5% +5.7% +7.7% ip cop

autoinc 72 301 14 116 -80.5% -61.0% 5.1× 2.5× +0.4% +4.4% +0.3% +14.5% ip cop

crc comb 73 61 1 6 -98.6% -90.0% 72.9× 9.4× +0.2% +8.7% +2.5% +8.5% ip cop
iterative 73 61 8 24 -89.0% -60.0% 9.1× 2.5× +0.6% +3.2% +3.7% +6.3% cop cop

cordic
comb 125 85 1 4 -99.2% -95.0% 30.9× 7.5× +305.0% +182.6% +39.8% +33.6% ip cop

multicycle 125 85 9 16 -92.8% -81.0% 13.6× 5.3× +1.8% +0.7% +62.6% +38.3% cop cop
iterative 125 85 9 16 -92.8% -81.0% 13.7× 5.2× +1.7% +1.8% +16.8% +23.1% cop cop

gemm2x2 305 61 12 31 -96.0% -49.0% 14.6× 1.5× +73.5% +32.8% +44.5% +45.8% cop cop

stream add 71 101 18 46 -74.6% -54.0% 3.9× 2.1× +0.5% +3.0% +12.1% +21.1% cop cop

Nangate45 process. The target frequency is configured above the
attainable frequency, with the final frequency being calculated by
subtracting the worst negative slack. For timing and area evaluation,
we removed caches from Rocket-core to ensure fair comparison.

B. Impacts of custom instructions

Table V presents the impacts of custom instructions on the perfor-
mance and hardware overheads. The simd custom instruction reduces
the execution cycles by 95% and 66%, achieves 20.0× and 2.8×
overall speedup, increases the clock period by -0.2% and 5.7%,
and increases the area by 2.5% and 10.6%, on Clay-core and
Rocket-core, respectively. For complex mul, the custom instruction
on Clay-core achieves a much higher speedup of 203.2× by reducing
99.6% execution cycles, but it also leads to 39.3% clock cycle
period increase, while on Rocket-core, the new instruction achieves
a moderate 9.3× speedup and causes a more minor 2.5% period
increase. This occurs because Rocket-core already features a built-
in multiplier FU with an original execution cycle of 38 (significantly
lower than Clay-core’s 283), while the newly added multipliers
substantially degrade Clay-core’s frequency. For sbox and autoinc
custom instructions, Clay saves 75.0%-80.5% and 25.0%-61.0%
execution cycles, achieves 4.0×-5.1× and 1.3×-2.5× overall speedup,
increases period by -0.3%-0.4% and 2.5%-4.4%, and uses 0.3%-5.7%
and 7.7%-14.5% more area, for Clay-core and Rocket-core, respec-
tively. For all the remaining custom instructions, Clay also achieves
significant speedup, ranging from 3.9× to 72.9× for Clay-core and

from 1.5× to 9.4× for Rocket-core. These results demonstrate that
Clay introduces substantial performance gains across RISC-V cores.

1) Benefits of stateful custom instructions: As shown in Table V,
implementing large custom instructions, such as cordic, in the com-
binational manner with the computation loop fully unrolled, will
seriously worsen the processors’ timing. Although the combinational
implementation of the cordic instruction reduces the execution cycles
by 99.2% and 95.0% and achieves 30.9× and 7.5× speedup on
Clay-core and Rocket-core, it increases the clock cycle period by
305.0% and 182.6% on the two base processors, respectively. Even
though the high-level synthesis technique can schedule the unrolled
computation into multiple stages to ease the timing issue, the multi-
cycle implementation cannot fully reuse the computation resources,
causing 62.6% and 38.3% area overheads on the two base processors.
These challenges remain unavoidable in prior ASIP frameworks [8],
[10], [27]. Clay, on the other hand, supports stateful custom instruc-
tions to solve the dilemma. The iterative implementation of the cordic
custom instruction as coprocessor without unrolling the loop also
avoids the timing issue, while introducing only 16.8% and 23.1%
area overheads on the two base processors, both of which are lower
than those of the multi-cycle implementation. However, iterative
implementation does not always yield superior solutions. For the
crc custom instruction, the iterative implementation achieves much
lower speedup (9.1× and 2.5×) than the loop-unrolled combinational
implementation (72.9× and 9.4×), while causing similar timing and
area overheads. This is because crc’s bitwise operations have low

7
Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 07:29:44 UTC from IEEE Xplore. Restrictions apply.

delay and can be scheduled into a single stage without degrading
processor frequency. Clay provides designers with the loop-unrolling
directive to easily switch between different implementations for the
best solution. Moreover, Clay also supports the stream add custom
instruction, which contains a for-loop that cannot be fully unrolled
due to the variable loop bound, as shown in Figure 4a. Prior ASIP
frameworks cannot implement this stateful custom instruction, while
Clay synthesizes it into a coprocessor, achieving 3.9× and 2.1× overall
speedup on Clay-core and Rocket-core, respectively.

2) Benefits of microarchitecture-aware synthesis: Table V presents
that Clay selects the in-pipeline coupling strategy for implementing
the four combinational custom instructions (simd, complex mul, sbox,
and autoinc) on Clay-core, since the in-pipeline coupling is more
lightweight and hardware efficient. The experimental results show
that the in-pipeline coupling on Clay-core achieves lower clock
period overheads on the custom instructions except complex mul, and
uses less area overheads on all four custom instructions, compared
against the coprocessor coupling on Rocket-core, even though
Rocket-core has a larger base clock period and area. These results
demonstrate that Clay selects more efficient coupling strategies.

For the gemm2x2 and stream add custom instructions, Clay imple-
ments them as coprocessors on both Clay-core and Rocket-core,
since the two RISC-V processor pipelines cannot provide enough
memory access channels to couple the custom instructions in the
in-pipeline manner. For gemm2x2, although Clay’s implementation
achieves a much higher speedup (14.6×) on Clay-core than the
speedup (1.5×) in Rocket-core, the advantage mainly comes from
the fact that Rocket-core already has a built-in multiplier and its
original execution cycle is much lower than that of Clay-core.
Experiments on the stream add custom instruction can better demon-
strate the effectiveness of Clay’s microarchitecture-aware schedul-
ing introduced in Section III-D. Clay-core and Rocket-core
have different microarchitecture configurations for memory access.
Clay-core’s memory bus has the independent load and store
channels, corresponding to Figure 5a, while Rocket-core uses
the TileLink [31]-like HellaCache [6] memory interface, which
has only one memory channel for load and store operations to
share, corresponding to Figure 5b. Thereby, Clay’s microarchitecture-
aware scheduling produces implementations with II of 2 and 3
for Clay-core and Rocket-core, respectively, fully leveraging the
microarchitectural resources. The experiments in Table V are con-
ducted with the stream length of 8, and the execution cycles of
Clay-core and Rocket-core with the custom instruction are 18
and 46, presenting the practical II of 2.25 and 5.8, respectively.
Clay-core’s practical II is close to Clay’s scheduled II of 2; however,
Rocket-core’s practical II is much larger than the scheduled II of 3.
The reason for the degraded performance is that Rocket-core’s cache
has a minimal response latency of 2, which will trigger the stalling
mechanism of Clay-synthesized coprocessor to wait for the response
and worsen the performance. On the other hand, the better perfor-
mance on Clay-core demonstrates that Clay’s microarchitecture-
aware scheduling can fully leverage the microarchitectural resources
to exploit the acceleration potentials of custom instructions.

C. Accelerating real-world workloads

We also evaluate Clay using real-world workloads from computer
vision and digital signal processing domains. To accelerate these
workloads, multiple custom instructions are added and work jointly.
We evaluate two representative workloads: (1) edge detection of
colored images (EdgeDet) and (2) carrier frequency offset esti-
mation (CFOEst). We customize 4 instructions, rgba2gray, 3×3

TABLE VI: Results of accelerating real-world workloads

Workload #Cycle #Instr
Speedup Period Area

Orig. Opt. Orig. Opt.

EdgeDet 1173718 294249 1095685 17 4.0× -0.1% +39.0%
CFOEst 1523 36 1113 9 33.9× +24.7% +47.9%

sobel, 3×3 erode, and 3×3 dialate for EdgeDet, and 3 instructions,
complex mean, complex mul and cordic for CFOEst. The custom
instructions for the two workloads require CADL’s control flow
statements for microarchitecture-agnostic stateful description. It takes
87 LOC and 50 LOC in total to describe the two sets of custom in-
structions, respectively. The experiments are conducted on Clay-core
according to the methodology described in Section IV-A3.

Table VI presents the experimental results. With the custom
instructions, the optimized program only requires 17 instructions to
execute the EdgeDet workload, greatly mitigating processor frontend
pressures such as instruction cache misses. Every custom instruction
includes nested for-loop control flow and multiple memory access
operations. Clay’s microarchitecture-aware synthesis fully utilizes
Clay-core’s memory channels and achieves the best II of 1 for all
four custom instructions. Besides, the synthesized coprocessors have
specific FSMs for the loop control, avoiding branch misprediction
during the workload execution. For the CFOEst workload, the custom
instructions reduce the instruction count from 1113 to 9, achieving a
33.9× speedup. These results demonstrate that Clay can significantly
accelerate real-world workloads with flexible microarchitecture-aware
instruction customization.

For timing and area overhead, the frequency for EdgeDet remains
almost unchanged, and the area is increased by 39%, according to
Table VI. The area overheads are spent on the custom registers intro-
duced to buffer image tiles inside the coprocessors. CFOEst’s custom
instructions cause a 24.7% increase in clock period and 47.85% in
area. The relatively large timing overhead is due to the critical paths
inside the newly added multipliers, and the increased area comes
from the multipliers (19.4%), the CORDIC module (16.8%), and the
custom registers for buffering (11.6%). Since the Clay-core base
processor is a very small core without on-chip SRAM, the 47.9%
area overhead is moderate and acceptable, especially considering
the significant speedup achieved. These results highlight that Clay’s
features are fully exploited to significantly accelerate real-world
workloads without introducing unacceptable hardware overheads.

V. CONCLUSION

This paper presents Clay, a high-level ASIP framework that enables
accessible RISC-V-based ASIP customization. Clay delivers a unified
instruction extension interface that supports diverse coupling strate-
gies while enabling both stateful instruction behavior description and
microarchitecture-aware instruction synthesis. Experimental evalua-
tions on two RISC-V processors demonstrate significant performance
gains—up to 203× on individual kernels and 34× on real-world
workloads—while maintaining reasonable hardware overhead.

ACKNOWLEDGMENT

This work was supported in part by the National Science Founda-
tion of China (Grant No. T2325001) and the National Key Research
and Development Program of China (Grant No. 2022YFB4500401).

8
Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 07:29:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz,
L. Wang, Z. Wang, M. Woo, and B. Xu, “Toward an Open-Source Digital
Flow: First Learnings from the OpenROAD Project,” in Proceedings of
the 56th Annual Design Automation Conference 2019, Jun. 2019.

[2] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of
control dependence to data dependence,” in Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
1983.

[3] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt,
J. Wright, J. Zhao, Y. S. Shao, K. Asanović, and B. Nikolić, “Chip-
yard: Integrated Design, Simulation, and Implementation Framework for
Custom SoCs,” IEEE Micro, 2020.

[4] Andes Technology, “Andes Custom Extension™,” publication Title:
Andes Technology. [Online]. Available: https://www.andestech.com/en/
products-solutions/andes-custom-extension/

[5] G. Armeniakos, A. Maras, S. Xydis, and D. Soudris, “Mixed-precision
Neural Networks on RISC-V Cores: ISA extensions for Multi-Pumped
Soft SIMD Operations,” in Proceedings of the 43rd IEEE/ACM Interna-
tional Conference on Computer-Aided Design, Apr. 2025.

[6] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, and
others, “The Rocket Chip Generator,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016. [Online].
Available: https://aspire.eecs.berkeley.edu/wp/wp-content/uploads/2016/
04/Tech-Report-The-Rocket-Chip-Generator-Beamer.pdf

[7] Bluespec Inc, “Accelerate-HLS.” [Online]. Available: https://info.
bluespec.com/acceleratehls

[8] Cadence Design Systems, Inc, “Cadence Tensilica Of-
ferings,” publication Title: Cadence Tensilica Offerings.
[Online]. Available: https://www.cadence.com/en US/home/tools/
silicon-solutions/compute-ip/technologies.html

[9] H. Cheng, G. Fotiadis, J. Großschädl, D. Page, T. H. Pham, and
P. Y. A. Ryan, “RISC-V Instruction Set Extensions for Multi-Precision
Integer Arithmetic: A Case Study on Post-Quantum Key Exchange Using
CSIDH-512,” in Proceedings of the 61st ACM/IEEE Design Automation
Conference, Jun. 2024.

[10] Codasip, “Codasip Studio,” publication Title: Codasip. [Online].
Available: https://codasip.com/products/codasip-studio/

[11] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on SDC formulation,” in Proceedings of the 43rd annual Design
Automation Conference, 2006.

[12] P. Coussy and A. Morawiec, Eds., High-Level Synthesis: From
Algorithm to Digital Circuit. Springer, 2008. [Online]. Available:
http://link.springer.com/10.1007/978-1-4020-8588-8

[13] M. Damian, J. Oppermann, C. Spang, and A. Koch, “SCAIE-V: an open-
source SCAlable interface for ISA extensions for RISC-V processors,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
Jul. 2022.

[14] J. M. Domingos, N. Neves, N. Roma, and P. Tomás, “Unlimited vector
extension with data streaming support,” in Proceedings of the 48th
Annual International Symposium on Computer Architecture. IEEE
Press, 2021.

[15] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-Threshold RISC-V
Core With DSP Extensions for Scalable IoT Endpoint Devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Oct. 2017.

[16] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
publication Title: Gurobi Optimization. [Online]. Available: https:
//www.gurobi.com/

[17] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and
H. Meyr, “A methodology for the design of application specific in-
struction set processors (ASIP) using the machine description language
LISA,” in IEEE/ACM International Conference on Computer Aided
Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat.
No.01CH37281), 2001.

[18] P. Ienne and R. Leupers, Customizable Embedded Processors: Design
Technologies and Applications. Elsevier, Aug. 2006.

[19] M. Jain, M. Balakrishnan, and A. Kumar, “ASIP design methodologies:
survey and issues,” in VLSI Design 2001. Fourteenth International
Conference on VLSI Design, Jan. 2001.

[20] L. Jia, Z. Luo, L. Lu, and Y. Liang, “TensorLib: A spatial
accelerator generation framework for tensor algebra,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC), pp. 865–870, ISSN:
0738-100X. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/9586329

[21] H. Li, N. Mentens, and S. Picek, “A scalable SIMD RISC-V based
processor with customized vector extensions for CRYSTALS-kyber,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
Aug. 2022.

[22] K. Liyanage, H. Gamaarachchi, H. Saadat, T. Li, H. Samarakoon, and
S. Parameswaran, “Accelerating Chaining in Genomic Analysis Using
RISC- V Custom Instructions,” in 2024 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Mar. 2024.

[23] Z. Luo, L. Lu, S. Zheng, J. Yin, J. Cong, J. Yin, and Y. Liang,
“Rubick: A synthesis framework for spatial architectures via dataflow
decomposition,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/10247743

[24] P. Mishra and A. Shrivastava, “ADL-driven Methodologies for Design
Automation of Embedded Processors,” in Processor Description Lan-
guages, P. Mishra and N. Dutt, Eds., Jan. 2008.

[25] Nuclei System Technology, “NICE (Nuclei Instruction Co-unit
Extension).” [Online]. Available: https://doc.nucleisys.com/hbirdv2/
core/core.html#nice

[26] OpenHW Group, “Core-V eXtension interface (CV-X-IF),” Apr. 2025.
[Online]. Available: https://github.com/openhwgroup/core-v-xif

[27] J. Oppermann, B. M. Damian-Kosterhon, F. Meisel, T. Mürmann,
E. Jentzsch, and A. Koch, “Longnail: High-Level Synthesis of Portable
Custom Instruction Set Extensions for RISC-V Processors from De-
scriptions in the Open-Source CoreDSL Language,” in Proceedings of
the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, Apr. 2024.

[28] P. Scheffler, L. Colagrande, and L. Benini, “SARIS: Accelerating Stencil
Computations on Energy-Efficient RISC-V Compute Clusters with In-
direct Stream Registers,” in Proceedings of the 61st ACM/IEEE Design
Automation Conference, 2024.

[29] F. Schuiki, F. Zaruba, T. Hoefler, and L. Benini, “Stream semantic
registers: A lightweight risc-v isa extension achieving full compute
utilization in single-issue cores,” IEEE Trans. Comput., vol. 70, no. 2,
p. 212–227, Feb. 2021. [Online]. Available: https://doi.org/10.1109/TC.
2020.2987314

[30] Siemens, “Catapult High-Level Synthesis Tools,” publication Title:
Siemens Digital Industries Software. [Online]. Available: https:
//eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/

[31] SiFive Inc., “SiFive TileLink Specication Version 1.8.1.” [Online].
Available: https://starfivetech.com/uploads/tilelink spec 1.8.1.pdf

[32] Synopsys, Inc, “Synopsys ASIP Designer,” publication Title: Synopsys
ASIP Designer. [Online]. Available: https://www.synopsys.com/dw/
ipdir.php?ds=asip-designer

[33] Veripool, “Verilator,” Apr. 2025. [Online]. Available: https://www.
veripool.org/verilator/

[34] C. Wolf, “Yosys open synthesis suite,” 2016. [Online]. Available:
https://yosyshq.net/yosys/

[35] Y. Xiao, Z. Luo, and Y. Liang, “cmt2: Rule-Based Hardware Description
in Rust with Temporal Semantics,” in 5th Workshop on Languages, Tools,
and Techniques for Accelerator Design (LATTE’25), 2025.

[36] Y. Xiao, Z. Luo, K. Zhou, and Y. Liang, “Cement: Streamlining FPGA
Hardware Design with Cycle-Deterministic eHDL and Synthesis,” in
Proceedings of the 2024 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Apr. 2024.

[37] R. Xu, Y. Xiao, J. Luo, and Y. Liang, “HECTOR: A multi-level
intermediate representation for hardware synthesis methodologies,”
in Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design, ser. ICCAD ’22. Association for Computing
Machinery, pp. 1–9. [Online]. Available: https://dl.acm.org/doi/10.1145/
3508352.3549370

[38] E.-Y. Yang, T. Jia, D. Brooks, and G.-Y. Wei, “FlexACC: A Pro-
grammable Accelerator with Application-Specific ISA for Flexible Deep
Neural Network Inference,” in 2021 IEEE 32nd International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
Jul. 2021.

[39] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in 2013 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Nov. 2013.

9
Authorized licensed use limited to: Peking University. Downloaded on January 16,2026 at 07:29:44 UTC from IEEE Xplore. Restrictions apply.

