23
24
25
26
27
28
29
30

32
33

35

36

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

An Empirical Comparision of LLM-based Hardware Design and
High-level Synthesis

Anonymous Author(s)

ABSTRACT

Field-Programmable Gate Arrays (FPGAs) are increasingly used
for accelerating diverse applications due to their reconfigurability
and ability to implement custom hardware architectures. However,
programming FPGAs remains challenging, traditionally relying
on low-level Hardware Description Languages (HDLs) like Ver-
ilog, which are intricate and time-consuming. High-Level Synthesis
(HLS) tools, such as Vitis HLS, have emerged to address these is-
sues by allowing hardware functionality description in high-level
languages like C/C++, but they come with their own limitations,
including less efficient hardware implementations, delay overhead
caused by conservative scheduling strategies, and unpredictable
solutions due to semantic differences between software and hard-
ware.

This paper explores the potential of Large Language Models
(LLMs) in FPGA design, particularly for generating complex Verilog
kernels. We present a novel approach that guides LLMs to generate
synthesizable and efficient Verilog code for complex FPGA kernels.
Our method addresses key challenges in LLM-based hardware de-
sign. Through a case study on the PolyBench suite, we demonstrate
that our LLM-guided approach can generate HDL implementations
that surpass HLS tools in performance and resource utilization. The
experimental results show that our approach reduces latency by an
average of 28.88% compared to HLS, with a maximum reduction
of 66.94% in pipelined designs and an average reduction of 8.41%,
peaking at 55.76% in sequential stages. Furthermore, it decreases
LUT usage by an average of 25.18% and flip-flop usage by 57.23%
compared to HLS.

1 INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) have emerged as power-
ful platforms for accelerating a wide range of applications across
domains such as artificial intelligence, high-performance comput-
ing, and data processing. [7, 28] Their reconfigurability and abil-
ity to implement custom hardware architectures make them ideal
for adopting cutting-edge microarchitectural technologies to meet
the demands of emerging applications. However, despite their ef-
fectiveness, programming FPGAs remains a significant challenge,
hindering their wider adoption and utilization.

Traditionally, FPGA design has relied on Hardware Description
Languages (HDLs) such as Verilog and VHDL. HDLs are praised for
their ability to provide circuit representations that closely mimic
inherent hardware structures, offering several advantages. They
generally produce high-quality results in terms of performance and
resource usage, allow fine-grained control over hardware imple-
mentation details, and give designers a deep understanding of the
underlying hardware architecture. However, the low-level nature
of HDL programming requires designers to manage intricate details
of hardware implementation, leading to lower productivity due to
longer development times and a more complex, time-consuming

verification process. It also demands in-depth hardware design ex-
pertise, making it challenging to explore different architectural
options quickly. Additionally, maintaining and modifying HDL de-
signs can be more difficult compared to higher-level approaches.

In response to these challenges, High-Level Synthesis (HLS)
tools [3, 8, 22, 27], such as Vitis HLS [25], have emerged as an
alternative approach, attempting to raise the abstraction level of
hardware design to the software domain. HLS allows designers to
use high-level programming languages like C or C++ to describe
hardware functionality, which is then automatically translated into
Register-Transfer Level (RTL) representations. It significantly in-
creases productivity, and reduce the learning curve for FPGA pro-
gramming compared to HDLs programming. Besides, it enables
faster design space exploration through tool directives and con-
straints, and simplifies the verification process by often allowing
the use of software-level verification tools. It’s more accessible to
software engineers, lowering the barrier for hardware design, and
facilitates faster prototyping and shorter time-to-market [11, 12].
HLS also makes it easier to target new platforms or adapt to chang-
ing requirements, and reduces the likelihood of introducing bugs
due to its higher abstraction level.

However, HLS is not without its drawbacks [14]. The quality
of HLS-generated designs often lags behind hand-crafted RTL in
terms of performance and resource usage, and designers have less
direct control over hardware implementation details, which can
be obfuscated. HLS is highly tool-dependent, with results varying
significantly between different tools, and it may struggle with cer-
tain types of algorithms, especially those with dynamic behaviors.
Additionally, HLS requires C/C++ code to be written in a specific,
synthesizable style, which can lack hardware awareness and lead
to challenges in exploiting FPGA parallelism, resulting in less ef-
ficient hardware implementations compared to hand-coded RTL.
Furthermore, the semantic differences between software and hard-
ware domains can sometimes lead to unpredictable or suboptimal
solutions.

Given these challenges in both HDL and HLS approaches, there
is a growing interest in exploring alternative methodologies for
FPGA design [4, 21, 26]. One such promising avenue is the appli-
cation of Large Language Models (LLMs) to hardware description
languages [5, 16-18]. LLMs, which have demonstrated remarkable
capabilities in natural language processing and code generation
tasks, present an intriguing possibility for bridging the gap between
high-level design intent and low-level hardware implementation.
The potential of LLMs in FPGA design lies in their ability to under-
stand and generate code based on natural language descriptions or
high-level specifications. This approach could potentially combine
the high-level abstraction benefits of HLS with the fine-grained
control and efficiency of HDLs. By leveraging the contextual under-
standing and pattern recognition capabilities of LLMs, designers
could potentially express their design intent in natural language

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

or high-level pseudocode, which the LLM could then translate into
efficient and user-friendly HDL code.

However, applying LLMs to hardware design, particularly for
complex FPGA kernels, presents its own set of challenges and oppor-
tunities that warrant thorough investigation. The primary obstacle
is the scarcity of high-quality HDL datasets, which severely con-
strains the capability of LLMs to generate accurate and efficient
code. This limitation stems from the specialized and often propri-
etary nature of hardware design, as well as the relatively smaller
community compared to software development. As a result, there
is a limited pool of high-quality, diverse Verilog code available for
training LLMs. Previous studies have focused on collecting and syn-
thesizing more diverse Verilog code to improve the performance of
these models [5, 17, 18]. However, they primarily concentrated on
simpler modules, leaving a significant gap in addressing complex
hardware designs. Consequently, LLMs trained on available data
often struggle with the intricacies and specific requirements of
HDLs, particularly when it comes to clock-cycle timing constraints,
resource utilization, and microarchitecture optimizations.

Despite these challenges, there is significant potential to over-
come these limitations and leverage LLMs effectively for FPGA
programming. In this paper, we conduct an empirical comparison
of LLM-based hardware design and traditional HLS approaches.
We develop and evaluate specialized prompting methodologies to
guide LLMs in generating more accurate and contextually appro-
priate HDL code. Our approach demonstrates how carefully crafted
prompts can significantly improve the quality and relevance of LLM-
generated Verilog code. Additionally, we propose an integration of
domain-specific knowledge into the LLM pipeline, incorporating
FPGA architecture details, timing constraints, and resource uti-
lization guidelines. This integration enhances the LLMs’ ability to
generate optimized HDL code, bridging the gap between high-level
abstractions and efficient hardware implementations. Our work
introduces and assesses post-processing techniques designed to
refine and optimize LLM-generated code, addressing FPGA-specific
requirements and improving overall code quality. Through a thor-
ough study of the strengths and limitations of LLMs across a diverse
range of FPGA design tasks, we provide insights into the potential
of LLMs to revolutionize FPGA programming.

Our contributions are summarized as follows:

e We conduct a comprehensive analysis of the fundamental
limitations LLMs face when generating complex hardware
HDLs for FPGA kernels.

e We propose a novel, iterative methodology that leverages
LLMs for HDL generation, incorporating step-by-step code
generation, few-shot examples, and targeted human inter-
vention to address the identified limitations and produce
synthesizable, efficient and user-friendly hardware designs.

o We demonstrate that our LLM-guided approach can gener-
ate HDL implementations that surpass HLS tools in terms of
latency and resource utilization for complex FPGA kernels.

The experimental results show that our approach reduces latency by
an average of 28.88% compared to HLS, with a maximum reduction
of 66.94% in pipelined designs and an average reduction of 8.41%,
peaking at 55.76% in sequential stages. Furthermore, it decreases

Anon.

LUT usage by an average of 25.18% and flip-flop usage by 57.23%
compared to HLS.

2 BACKGROUND

In this section, we discuss programming frameworks for FPGA,
including hardware description languages (HDLs) and High-Level
Synthesis (HLS). Additionally, We introduce the emerging trend
of using Large Language Models (LLMs) for FPGA programming,
highlighting their potential to further simplify and accelerate the
hardware design process.

Table 1 provides a comprehensive comparison of LLM-based
Design, HDLs and HLS across seven key aspects of FPGA program-
ming, illustrating the trade-offs between traditional, emerging, and
intermediate approaches to hardware design.

2.1 FPGA Programming Frameworks

Field-Programmable Gate Array (FPGA) programming has under-
gone significant transformations to address the increasing complex-
ity of hardware designs and the need for improved productivity.
This evolution spans multiple generations of programming frame-
works, each offering different levels of abstraction and control over
hardware implementation.

Traditional HDLs such as Verilog and VHDL primarily operate
at the Register-Transfer Level (RTL). At this level, they describe
digital circuits by specifying the flow of data and control signals
between registers and through combinational logic elements. While
HDLs offer fine-grained control over hardware implementation,
they require designers to manage intricate low-level details. This
approach, although effective, often results in poor productivity and
increased development time, especially for complex designs.

To address the limitations of HDLs, HLS tools [3, 8, 22, 27]
like Vitis HLS [25] and Intel HLS Compiler [10] have been de-
veloped. These tools employ a subset of software languages, such
as C/C++ and SystemC, to describe hardware functionality at a
higher level of abstraction. HLS tools automatically convert these
high-level specifications into HDL representations such as VHDL
or Verilog [6, 9, 13, 27]. This automation simplifies the design of
complex hardware systems, reducing the time and effort required
for low-level coding and allowing designers to optimize and ma-
nipulate designs more efficiently [11, 12]. HLS also facilitates rapid
design space exploration through the use of synthesis directives,
constraints and DSE frameworks [20], enabling designers to quickly
evaluate different implementation trade-offs.

However, there are notable drawbacks to HLS [14]. The hardware
implementations generated by HLS often lack efficiency compared
to hand-coded RTL, primarily due to the higher level of abstraction.
This abstraction can lead to several key limitations. HLS-generated
designs typically require more FPGA resources than their RTL
counterparts due to the inherent overhead associated with RTL
generation in HLS. Consequently, these designs may not efficiently
utilize the hardware’s capabilities. Performance constraints also
present challenges for HLS designs. They frequently exhibit higher
latency than optimized RTL implementations due to the complexi-
ties involved in translating high-level code into hardware. Although
HLS can sometimes achieve comparable performance metrics, it
generally struggles with latency issues. Additionally, achieving

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

An Empirical Comparision of LLM-based Hardware Design and High-level Synthesis

Conference’17, July 2017, Washington, DC, USA

Aspect

LLM-based Design

HDL

HLS

Abstraction Level

Highest; uses natural language
prompts for design description

Low-level; describes hardware at
Register Transfer Level (RTL)

High-level; uses C/C++-like lan-
guages for algorithmic description

Learning Curve

Lower; focuses on effective prompt
engineering and iterative refine-
ment

Steep; requires in-depth under-
standing of hardware architecture
and digital logic

Moderate; combines high-level pro-
gramming with hardware design
concepts

Code Quality and
Complexity

Variable; may require significant re-
finement for complex designs

High; allows precise control but can
be verbose for complex systems

High; benefits from years of com-
piler optimizations for efficient
hardware generation

Design Process

Flexible and iterative; relies on natu-
ral language interaction and prompt
refinement

Structured and detailed; requires ex-
plicit specification of hardware be-
havior

Algorithmic; focuses on functional-
ity with automated hardware infer-
ence

Optimization Capa-
bilities

Limited; requires explicit guidance
and may not capture all hardware-

Extensive; allows fine-grained con-
trol over optimizations but requires

Strong; incorporates built-in opti-
mizations for various hardware ar-

specific optimizations

manual implementation

chitectures

signs; may face challenges with
very large or intricate systems

Productivity Potentially high for simple to mod- | Lower for complex designs; time- | High for complex algorithmic de-
erate designs; faster initial prototyp- | consuming to write and verify de- | signs; accelerates development of
ing tailed RTL code computation-intensive systems

Scalability Suitable for small to medium de- | Highly scalable but requires signifi- | Scalable and efficient for large,

cant manual effort for large designs

algorithm-centric designs; may
have limitations for fine-grained
control

Table 1: Comparison between LLM-based hardware design, HDL, and HLS

precise control over timing and resource allocation can be more
challenging with HLS compared to direct HDL programming [24].

2.2 LLMs for FPGA Programming

Large Language Models (LLMs) have emerged as powerful tools for
code generation across various programming languages. Trained on
vast amounts of code and natural language data, these models can
learn the statistical patterns and relationships within the training
data, enabling them to generate code that adheres to the syntax
and style of the target programming language.

The application of LLMs to HLS spans various stages of the
design process, from high-level specification to hardware verifica-
tion [4, 21, 26]. LLMs have demonstrated significant potential in
facilitating and optimizing the high-level synthesis (HLS) process
for FPGAs by automating the conversion of high-level programming
languages into hardware-compatible code. By leveraging their code
generation capabilities, LLMs can effectively assist in transforming
standard C/C++ code into HLS-compatible formats. This transfor-
mation process involves refactoring constructs that are not directly
supported by HLS tools, such as dynamic memory allocation and
recursion, into forms suitable for hardware implementation. More-
over, LLMs can be integrated into pipelines to automate the entire
FPGA HLS workflow, from specification generation to optimiza-
tion and deployment. These models can generate HLS-compatible
code from natural language descriptions or standard C/C++ code,
allowing software engineers to engage in hardware design with
reduced expertise requirements. In the realm of hardware verifica-
tion, LLMs show promise in automating the generation of test cases
and identifying potential design flaws. This application could lead
to more thorough and efficient verification processes, crucial for

ensuring the reliability of complex hardware designs. Additionally,
LLMs are being explored as assistants in design space exploration,
suggesting optimizations and exploring design alternatives based
on specified constraints and objectives.

Apart from integrating LLMs into HLS workflows, researchers
in the field of hardware design have shown a growing interest in
leveraging LLMs for generating Hardware Description Languages
(HDLs) directly. The quality of the generated code depends heavily
on the quality and quantity of the training data. However, the hard-
ware design community is significantly smaller and more closed-
source than the mainstream programming languages community,
resulting in a limited pool of high-quality and diverse Verilog code
for training LLMs. Furthermore, LLMs trained on large amounts of
software code tend to be biased towards producing software-like
Verilog code. This bias can lead to inefficiencies in FPGA program-
ming, as LLMs may not fully grasp the inherent parallelism of HDLs,
which is crucial for efficient hardware design. To address these chal-
lenges, several studies have attempted to synthesize high-quality
Verilog datasets using LLMs [5, 16—18]. While these efforts have
yielded improvements in generating smaller modules, they still
struggle with complex kernels. The generated code often fails to
meet the stringent requirements of sophisticated hardware designs.

Recognizing these limitations, some researchers [4, 15, 21] have
emphasized the necessity of expert guidance for complex kernels.
However, the lack of an efficient approach has led to scenarios
where designers spend a significant number of prompts and consid-
erable effort guiding LLMs to generate correct code, which is highly
inefficient and time-consuming. Our research addresses this gap by
exploring more effective methods for utilizing LLMs in FPGA pro-
gramming. We propose that while LLMs may not yet be capable of

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348



362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

fully generating correct code without expert guidance, employing
the right methods can drastically reduce the number of prompts
required. Moreover, our approach produce hardware code with
resource utilization and latency performance compared to tradi-
tional methods. By focusing on optimizing the interaction between
human experts and LLMs, we seek to leverage the strengths of both
to create a more efficient and effective FPGA programming process.
This approach not only addresses the current limitations of LLMs
in hardware design but also paves the way for future advancements
in the field, potentially revolutionizing the way complex FPGA
designs are developed and optimized.

3 METHODOLOGY

In this section, we present a detailed introduction to our experi-
mental methodology. In subsection 3.1, we discuss the limitations
of applying LLMs to complex HDLs in FPGA kernels. subsection 3.2
details the step-by-step process of our generation methodology.
Finally, in subsection 3.3, we provide an in-depth case study of
a kernel from PolyBench to illustrate our approach in a practical
context.

3.1 Limitations of LLM

The application of LLMs to generate complex HDL FPGA kernels
faces significant challenges, primarily stemming from the models’
training on software-centric datasets. Even the most advanced mod-
els, such as Claude3.5-Sonnet [2] and GPT-40 [19], can generate
hardware code correctly for most relatively small-scale modules
but tend to generate software-like HDLs when faced with complex
kernels. These limitations are primarily due to the fundamental
differences between software and hardware paradigms. Software
paradigms focus on sequential execution and high-level abstrac-
tions, whereas hardware paradigms require parallelism, timing
control, and resource constraints to ensure synthesizability and
efficiency. Figure 1 illustrates two common issues:

Resource Insensitivity. As shown in Figure 1a, LLMs tend to
describe hardware using software-like constructs, such as multi-
dimensional arrays (A [@:7]1[0:71]), rather than employing hardware-
specific port and address specifications. This approach, while in-
tuitive from a software perspective, fails to align with hardware
programming guidelines necessary for synthesizing efficient IP
cores. Efficient FPGA designs require careful consideration of re-
source allocation, timing constraints, and parallel processing capa-
bilities—aspects that software-trained LLMs struggle to incorporate
inherently.

Syntax Errors. The examples in Figure 1b and Figure 1c illus-
trate the propensity of LLMs to misapply software-specific syntax
in hardware descriptions, leading to syntax errors in HDL code gen-
eration. Figure 1b demonstrates a common issue in LLM-generated
testbenches for hardware like the atax kernel. Here, the model in-
correctly employs the software increment operator i++, which is
invalid in Verilog. The correct hardware syntax requires explicit as-
signment, suchas i = i + 1. This misalignhment between software
and hardware syntax conventions often results in non-synthesizable
code. Furthermore, LLMs trained on software paradigms struggle
to grasp hardware-specific concepts such as loop unrolling or the
implementation of loops as state machines, which are crucial for

Anon

module atax_kernel(
input wire clk,
input wire reset,
input wire start,
input wire [31:0] A [0:7][0:7],
input wire [31:0] x [0:7],
output reg [31:0] y [0:7],
output reg done

(a) IO Port Issue

for (int i = 0; i < 8; i++) begin
for (int j = 0; j < 8; j++) begin
ALiI[§]1 =1 *8+ 3+ 1
x[i] =1 + 1;
end

(b) Loop Counter Issue

module incorrect_wire_assignment(
input wire clk,
input wire reset,
input wire [31:0] a,
input wire [31:0] b,
output wire [31:0] result

D
always @(posedge clk or posedge reset) begin
if (reset) begin
result = 32'bo;
end else begin
result = a + b;
end
end
endmodule

(c) Incorrect wire assignment in always block

Figure 1: Limitations of LLM-generated Verilog code influ-
enced by software-like patterns

efficient FPGA designs. A more fundamental misunderstanding
of hardware concepts is evident in Figure 1c. This example re-
veals LLMs’ difficulty in distinguishing between wire and register
assignments in sequential logic—a cornerstone principle of HDL
design. The generated code erroneously attempts to assign values
to wires within sequential blocks, a practice that violates basic HDL
principles and leads to non-functional designs. This type of error
represents one of the most prevalent issues in LLM-generated HDL
code, underscoring the significant gap between software-oriented
training data and the specific requirements of hardware description
languages.

Insufficient Awareness of Clock Cycles and Register Prop-
erties. Another critical limitation of LLMs in generating HDL code
is their inadequate understanding of clock cycle behavior and reg-
ister properties inherent to hardware design. This deficiency often
leads to functionally incorrect or inefficient implementations, par-
ticularly in complex pipelined designs. Figure 2 illustrates part of
an atax kernel implementation in SystemVerilog, highlighting two
significant issues that stem from this limitation:

Misunderstanding of Pipeline Cycle Relationships. In the example,
the LLM-generated code incorrectly sets the condition for complet-
ing a pipeline stage as j == N - 1. This demonstrates a fundamental
misunderstanding of how pipeline stages relate to clock cycles in
hardware. The correct condition should be j == N, accounting for
the two-cycle latency of the single-cycle multiplier and register-
based address storage in the matrix-vector product calculation. This
error reveals that the LLM is treating the hardware implementation

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464



465
466
467
468
469
470
471
472
473
474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495

An Empirical Comparision of LLM-based Hardware Design and High-level Synthesis

COMPUTE_TMP: begin
if (j == 0) begin
acc <= 32'bo;
we_tmp <= 0;
end else begin
acc <= acc + mult_p;
end

if (j == N - 1) begin
j <=0
we_tmp <= 1;
di_tmp <= acc + mult_p;
addr_tmp_in <= i;
addr_x_out <= 0;

if (i == N - 1) begin
i <=0;
addr_a_out <= 0;
state <= COMPUTE_Y;
end else begin
i<=1+1;
addr_a_out <= i % N;
end
end else begin
j<=3+
addr_a_out <= addr_a_out + 1;
addr_x_out <= addr_x_out + 1;
end
end

Figure 2: Example of Insufficient Awareness of Clock Cycles
and Register Properties

as if it were software, assuming N operations can be completed
in N iterations. In reality, this pipeline requires N executions with
an interval of 1 and a latency of 2 for each execution. The LLM’s
software-centric approach fails to account for the temporal aspects
of hardware execution, potentially leading to incorrect results or
timing issues in the synthesized design.

Overlooking Register Update Timing. The second issue pertains to
the property of registers and the timing of their value updates. In
the code, the counter 1 is a register using non-blocking assignment
(<=). However, the LLM fails to account for the fact that the value
of i will not be updated until the next clock cycle. This is evident
in the line addr_a_out <= i * N, where the LLM assumes an
immediate update of i. In hardware design, it’s crucial to consider
that register values change only on clock edges, and these changes
are not immediately reflected in subsequent operations within the
same clock cycle. This oversight can lead to off-by-one errors or
more complex timing issues in the implemented design.

These limitations highlight a significant disconnect between the
software-centric training of LLMs and the specialized requirements
of hardware description languages. The gap becomes increasingly
problematic as the complexity of hardware designs grows, making
it crucial to address these challenges for the successful application
of LLMs in FPGA programming.

Despite these challenges, there exist viable strategies to mitigate
each of these limitations:

Resource Insensitivity. To address the LLMs’ tendency to gen-
erate resource-inefficient HDL code, we can implement a guided
approach that incorporates hardware-aware constraints and opti-
mization goals into the prompts. By providing specific guidelines
and clear definitions of the expected IP characteristics, we can
steer LLMs towards producing more resource-efficient designs. This
method leverages the LLMs’ ability to adapt to detailed instructions

Conference’17, July 2017, Washington, DC, USA

while compensating for their lack of inherent hardware resource
understanding.

Syntax Errors. The prevalence of software-specific syntax in
LLM-generated HDL can be mitigated through an iterative feedback
process. By feeding compiler error messages back to the LLM and
requests corrections, many syntax errors can be resolved without
extensive human intervention. This approach not only corrects
immediate errors but also helps the LLM learn and adapt to HDL-
specific syntax over time, potentially improving its performance in
subsequent code generation tasks.

Insufficient Awareness of Clock Cycles and Register Prop-
erties. This limitation, being the most complex, often requires a
combination of strategies. We propose a two-pronged approach: a)
Develop specialized prompts that explicitly highlight the tempo-
ral nature of hardware execution, emphasizing concepts such as
clock synchronization and parallel processing. b) Integrate human
expertise into the process to identify cycle-related errors and pro-
vide clear, cycle-accurate explanations to the LLM. This approach
ensures that subtle timing issues are addressed and helps guide the
LLM towards a more accurate understanding of hardware execution
principles.

In the following sections, we will detail our methodology for
implementing these solutions. We will provide concrete examples
of how each strategy is applied in practice, showcasing the poten-
tial of LLM-assisted hardware design when properly guided and
constrained.

3.2 Generation Flow

Our generation methodology, as illustrated in Figure 3, addresses
the limitations of LLMs in hardware design through a structured,
iterative approach that minimizes the need for human interven-
tion while maximizing the LLM’s ability to generate accurate and
efficient hardware designs.

The process begins with a C++ kernel to be generated, which the
LLM analyzes to produce a step-by-step description of the code’s
behavior. This description is crucial, as it breaks down complex ker-
nels into manageable stages, allowing the LLM to focus on smaller,
more tractable parts of the design. This approach directly addresses
the LLM’s tendency to generate software-like solutions when faced
with complex hardware tasks.

For each stage of the kernel, the LLM is tasked with generat-
ing both RTL code and a corresponding testbench. The RTL code
is required to include comments that explicitly address clock cy-
cle behavior, forcing the LLM to consider timing and state in a
hardware-specific context. This step-by-step generation process,
combined with cycle-aware commenting, significantly improves
the LLM’s awareness of clock cycles and register properties - a
key limitation we identified earlier. The testbench for each stage
serves a dual purpose: it verifies the correctness of the generated
RTL and provides a mechanism for the LLM to self-correct. If a
stage fails verification, the LLM is prompted to print intermediate
variables and debug its own code. This self-correction mechanism
is a critical feature of our methodology, as it minimizes the need
for human intervention and allows the LLM to learn from its mis-
takes. Human guidance is reserved for situations where the LLM
fails to self-correct or when hardware-specific optimizations, such

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

569



588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Conference’17, July 2017, Washington, DC, USA

Step-By-Step Kernel Generation

Step-by Step
Code Behavior A\
Description QY

A
@ C++ Kernel

o Human
© Guidance

Testbench

=N
/' RTL Code

B Documents

Anon.
P Synthesis
Verlflcatlor: Implementation E‘} Hardware
VIVADO VIVADO?

Figure 3: Overview of Generation Methodology

as pipelining, are required. This targeted use of human expertise
ensures that the process remains largely automated while still ben-
efiting from specialized knowledge when necessary.

Resource constraints and cycle behavior specifications for the
desired IP are provided in the documentation available to the LLM.
This information helps address the resource insensitivity issue
we previously identified, guiding the LLM towards more efficient
hardware implementations from the outset.

The optimization process is also iterative. The LLM first gener-
ates a base sequential implementation, which serves as a foundation
for more optimized versions. These optimizations are developed
through a combination of LLM-generated improvements, guided by
the sequential baseline, relevant documentation, and targeted hu-
man input. Once the full RTL code passes verification, it undergoes
synthesis and implementation in Vivado, generating a resource
utilization report.

It it to be noticed that a key strength of this methodology is its
ability to leverage previously generated designs. As more kernels
are successfully implemented, they serve as few-shot examples for
the LLM. For new designs, the most similar previously generated
kernel is used as a reference, often allowing the LLM to gener-
ate complete kernels and testbenches in just one or two prompts,
without the need for step-by-step separation. For entirely new or
complex kernels without close analogs, the step-by-step approach is
still employed. In these cases, a related generated hardware design
is still provided as a reference, helping the LLM understand the
general structure and expectations of hardware implementations.

This comprehensive approach not only addresses the limita-
tions of LLMs in hardware design but also creates a scalable, self-
improving system. By focusing on manageable steps, incorporating
self-correction mechanisms, and building a library of reference
designs, our methodology enables LLMs to generate increasingly
complex and efficient FPGA kernels with minimal human interven-
tion.

3.3 Case Study

In this section, we present a detailed case study that illustrates the
practical application of our LLM-based hardware design methodol-
ogy. This case study focuses on the generation and optimization of
the gemver kernel, demonstrating each step of our process.

We begin by demonstrating how to generate a testbench for
the gemver kernel. Figure 4 displays the prompt used to instruct

the LLM in this task. This prompt provides the LLM with the key
operations of the gemver kernel, extracted from the Polybench
benchmark suite. Importantly, it also directs the LLM to refer to a
previously generated gemm testbench as a reference, which pro-
vides the LLM with guidance on the structure, variable declarations,
and verification techniques typical in hardware design testbenches.
By leveraging this prior knowledge, we enable the LLM to generate
a more accurate and syntactically correct testbench for the new
kernel.

Here are the key operations of the gemver testbench in
Polybench.
#pragma scop

for (i = @; i < _PB_N; i++)
for (j = 0; j < _PBN; j+)
ACiI[3] = ALiI03] + ullil % v1[3] + w2[il * v2[j];

for (i = @; i < _PB_N; i++)

for (j = 0; j < _PB_N; j++)
x[i] = x[i] + beta * A[j1[i] * y[j];
for (i = @; i < _PB_N; i++)

x[i] = x[i] + z[i];

for (i = @; i < _PB_N; i++)
for (j = @; j < _PB_N; j++)
wli]l = w[il + alpha * A[il[j] * x[j];
#pragma endscop
Please write a testbench for it, you can refer to the gemm
testbench as follows...

Figure 4: Prompt for generate testbench

After generating the testbench, we proceed to the critical step
of creating the gemver kernel. This process exemplifies how our
methodology addresses the limitations of LLMs in hardware design,
particularly in terms of resource sensitivity and cycle-accurate be-
havior. Figure 5 shows the prompt used to guide the LLM in this
task. This prompt is carefully crafted to address the specific chal-
lenges of hardware design and to leverage the LLM’s capabilities
effectively. It explicitly specifies the use of particular multiplier
and RAM components. This directive ensures that the LLM consid-
ers actual hardware resources in its design, rather than defaulting
to software-like, resource-insensitive implementations. To align
the LLM’s output with realistic hardware constraints and ensure
fair comparisons with HLS tools in delay, we specify a single-cycle

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

An Empirical Comparision of LLM-based Hardware Design and High-level Synthesis

Please write the gemver kernel further. Here are some
constraints.

1. You need to use the specified multiplier and RAM to perform
multiplication operations and read or write matrices or
vectors.

[documents]. ..

2. Please note that completing one Multiply-Accumulate (MAC)
operation requires three cycles.

In the first cycle, assign addresses for reading or writing
values; these will not be valid until the second cycle.

During the second cycle, wait for the output from the
single-cycle multiplier

Finally, in the third cycle, assign the accumulated value. For
further reference, you can consult the 2mm kernel.

3. Please write the code for update A first, which is A[i][j]
= A[i1[3] + ullil * v1[j] + uw2l[il * v2[j]...

You can refer to the gemm kernel as follows ...

Figure 5: Prompt for generate sequential design

COMPUTE_X: begin
// x[1] = x[1] + beta * A[jI[i] * y[j] + z[i];
case (stage)
0: begin // First stage: Assign addresses
addr_a_out <= j * N + i;
addr_y_out <= j;
addr_x_out <= i;
addr_z_out <= i;
stage <= 1;
valid_reg <= 0;
we_x <= 0;
end
1: begin // Second stage: Wait for multiplication results
stage <= 2;
end
2: begin // Third stage: Accumulate
acc_x <= (j == 0) ? multli_p : acc_x + multi_p;

if (j == N - 1) begin

stage <= 3;
end else begin
j<=3+T
stage <= 0;
end
end
3: begin // Fourth stage: Start beta multiplication
stage <= 4;
end

4: begin // Fifth stage: Add z[i] and write result
di_x <= dout_x + mult2_p + dout_z;
we_x <= 1;
addr_x_in <= i;
data_out_reg <= dout_x + mult2_p + dout_z;
valid_reg <=

3

if (1 == N - 1) begin
state <= COMPUTE_W;
i<=0;
j<=0;
end else begin
i<=1+1;
j <=0
end
stage <= 0;
end
endcase

end
Figure 6: Code for the COMPUTE_X state in the gemver ker-
nel (sequential implementation)

multiplier. Otherwise, it generates a combinational multiplier by de-
fault. The prompt also provides detailed instructions on the timing
of Multiply-Accumulate (MAC) operations, breaking them down
into a three-cycle process. This level of specificity compels the LLM

Conference’17, July 2017, Washington, DC, USA

to explicitly consider clock cycles and register properties, directly
addressing a major limitation we identified earlier in LLM-based
hardware design. Our step-by-step methodology is evident in the
prompt’s instruction to focus first on the matrix update operation.
This approach helps manage complexity by allowing the LLM to
concentrate on generating correct, efficient code for each part of the
kernel separately. Additionally, the prompt references a previously
generated gemm kernel as an example, similar to the approach used
in testbench generation.

Code of COMPUTE_X state...

Can you implement a pipelined approach for the process between
stage @ and 2? Currently, completing one Multiply-Accumulate
(MAC) operation requires three cycles. In the first cycle,
addresses are assigned for reading or writing values, but
these will not be valid until the second cycle. The second
cycle waits for the output from a single-cycle multiplier. In
the third cycle, the accumulated value is assigned. As a
result, it takes 3N cycles to perform this operation.

I propose a pipelined method as follows:

- Cycle 0: Assign addresses for accumulation @.

- Cycle 1: Assign address for accumulation 1 and wait for
multiplication of accumulation @ (do nothing).

- Cycle 2: Assign address for accumulation 2 and wait for
multiplication of accumulation 1 (do nothing), then assign
accumulated value from cycle @ to x0.

This pattern continues:

- For each subsequent cycle up to N - 1:
- Assign address of accumulation N -1,
- Wait on multiplication of previous accumulations while
assigning earlier accumulated values accordingly.

In summary:

- Cycle N -1: Wait on multiplication of accumulation N -2 (do
nothing) and assign accumulated value from N -3 to x(N -3).

- Cycle N: Wait on multiplication of accumulation N -11 (do
nothing) and assign accumulated value from N -2 to x(N -2).

- Cycle N +1: Assign accumulated value from N -1 to x(N -1).

This pipelining reduces latency from 3N cycles down to just N
+2 cycles. Please revise your code accordingly.

Figure 7: Prompt for implementing the sequential kernel in
pipeline

Figure 6 shows the Verilog code generated by the LLM for the
COMPUTE_X stage of the gemver kernel in its sequential implemen-
tation. It adheres to the specified hardware constraints and uses a
5-stage process to compute the required operation, carefully man-
aging timing for memory access and multiplication. The design
includes single-cycle multipliers mult1 and mult2, and it imple-
ments the three-cycle MAC operation as requested. By assigning
addresses, waiting for multiplier outputs, accumulating results,
and handling beta multiplication separately, the code showcases
efficient loop control and state transitions. This implementation
reflects the LLM’s ability to generate hardware-aware designs when
provided with appropriate guidance and constraints.

The most challenging aspect was leveraging the LLM for pipeline
optimization. Figure 7 presents the prompt designed to guide the
LLM in implementing a pipelined version of the COMPUTE_X state
in the gemver kernel. Notably, this prompt is itself generated by
the LLM, demonstrating how an abstract pipeline representation
can yield detailed guidelines with minimal human input.

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812



813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869

870

Conference’17, July 2017, Washington, DC, USA

COMPUTE_X: begin
// x[i] = x[i] + beta * A[JI[i] * y[j] + z[il;
case (stage)
0: begin // First stage: Multiply and Accumulate

valid_reg <= 0;
we_x <= 0;
addr_x_out <= i;
addr_z_out <= i;

if (pipeline_stage < N) begin
// Assign addresses for next accumulation
addr_a_out <= j * N + i;
addr_y_out <= j;
j<=i+T
end

if (pipeline_stage >= 2) begin
acc_x <= (pipeline_stage == 2) ? multi_p
acc_x + multl_p;
end

if (pipeline_stage == N + 1) begin
pipeline_stage <= 0;
stage <= 1;
end else begin
pipeline_stage <= pipeline_stage + 1;
end
end
1: begin // Second stage: Start beta multiplication
stage <= 2;
end
2: begin // Third stage: Add z[i] and write result
di_x <= dout_x + mult2_p + dout_z;
we_x <= T1;
addr_x_in <= i;
data_out_reg <= dout_x + mult2_p + dout_z;
valid_reg <= 1;
if (i == N - 1) begin
state <= COMPUTE_W;
i<=0;
j <=0
end else begin
i<=1+1;
j <=0
end
stage <= 0;
end
endcase
end

Figure 8: Code for the COMPUTE_X state in the gemver ker-
nel (pipeline implementation)

The prompt begins by referencing the previous sequential im-
plementation, providing context and highlighting the inefficiency
of the current three-cycle Multiply-Accumulate (MAC) operation,
which results in a 3N cycle latency. At its core, the prompt offers
a detailed, cycle-by-cycle breakdown of the proposed pipelined
method, illustrating how overlapping multiple accumulations can
significantly reduce overall latency. This step-by-step explanation
is crucial in guiding the LLM to grasp the concept of hardware
pipelining. By providing a concrete, cycle-specific example of the
pipeline’s operation, the prompt offers the LLM a clear template to
follow.

The LLM-generated pipelined implementation of the COMPUTE_X
state in the gemver kernel is illustrated in Figure 8. It focuses on
pipelining the inner accumulation loop, previously encompassed in
stages 0 to 2, while maintaining the subsequent beta multiplication
and result writing stages. The design introduces a pipeline_stage
variable to manage concurrent processing, enabling efficient overlap

Anon

of multiple accumulations. In the pipeline stage, the code simulta-
neously handles address assignments for the next accumulation,
multiplication waiting, and accumulation of previous results. This
pipelined structure efficiently utilizes hardware resources, reducing
overall latency from 3N to approximately N+2 cycles.

Despite the LLM’s ability to generate complex hardware designs,
the process is not without challenges. The LLM occasionally strug-
gles to understand hardware-specific timing nuances as mentioned
earlier. For instance, it may overlook the inherent one-cycle delay
in registers and multipliers, incorrectly assuming immediate output
validity after input assignment. These timing oversights are par-
ticularly evident in the pipeline implementation, where the LLM
may struggle with the intricate timing requirements of start-up
and shutdown phases, or neglect to reset critical signals. In such
cases, human intervention becomes necessary to refine the LLM-
generated implementation and ensure its correctness and efficiency.

4 EXPERIMENTAL RESULTS

In this section, we present the experimental setup and results for our
comparison of hardware designs generated using LLMs, traditional
HLS tools, and a specialized tool, Cement. We aim to compare
the quality of hardware generated by LLMs with the efficiency of
traditional and state-of-the-art tools in terms of performance and
resource usage. Below, we elaborate on the experiment settings,
evaluation criteria, and present a detailed discussion of the findings.

4.1 Experimental Setup

We conducted our experiments using eleven benchmarks selected
from the PolyBench benchmark suite. These kernels were chosen
for their diverse computational behaviors and control structures,
including various types of branches and loops. This diversity al-
lows us to comprehensively assess the performance and resource
efficiency of the generated circuits across different approaches.
Our experiment aims to compare the quality of hardware designs
generated using three distinct approaches:

(1) An LLM-based approach utilizing Claude 3.5 Sonnet [1],
which employs our methodology to generate System Ver-
ilog.

(2) The Cement framework [24], which allows users to deter-
mine the occurrence cycle time of hardware operations
and generates control logic with lower overhead than that
of HLS, and achieves best results in latency in PolyBench
compared to existing HLS or DSL tools.

(3) A commercial HLS tool Vitis HLS [25].

For our experiments with the PolyBench benchmark suite, we

compare cycle count and resource utilization across three approaches.

For the LLM-based approach, we collect cycle counts by simulating
the produced SystemVerilog code with Icarus Verilog [23]. Cement
cycle counts are estimated using Verilator. Resource utilization for
both the LLM-based approach and Cement is estimated by run-
ning synthesis with Vivado 2022.2, targeting the Virtex UltraScale+
XCVU9P FPGA. For Vitis HLS 2022.2, we collect metrics including
cycle count and resource utilization from the co-simulation and
implementation reports. To ensure fair comparison, we set a consis-
tent target clock period of 7ns across all approaches, including Vitis

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928



929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

An Empirical Comparision of LLM-based Hardware Design and High-level Synthesis

1.5

& LLM HLS cMmT

L

T 1.0

o

o

N

©

g 0.5

o

z

0.0+ T T T T T T T T T T
QUgy b’Cg Uo,}bengemmgemvgfs[lmmfmm 3/,7/77 My Sy,e/r Syrge
(a) Comparison of latency for sequential designs
LLM HLS CMT

& 1000
w
bS]
3
2 500
=]
z

ol BN BES Bew B BN BeS B B
oy Olcg ‘70"’9@,79@”"779@’%3,6’81”%5'”'77 Sy Mt 2y Svrk

T T

(c) Comparison of number of flip-flops for sequential designs

LLM HLS CMT

-
(41
o
o

1000

Number of LUTs
a
o
o

(e T T T T T ! T T ! !
atay bicg do,,genge,,,mgemvgresu,nmfmm Sy Mt oy Sk

(e) Comparison of number of lut for sequential designs

Conference’17, July 2017, Washington, DC, USA

LLM HLS CMT

N
o

o
o

Normalized Latency

o
o

T T T T T T

QUay b/'cg do"@engem'hgeml/gfs‘lmmem”? 3,;7,77 My Sy,ek Syrge
Vv

T T

(b) Comparison of latency for pipelined designs

LLM HLS CMT

N
o
o
o

[$)}
o
o

Number of FFs

Ay iy ”O"’ge,,ge’"mge’hvgfs‘”hmfm'h Sy e gy Svrk

T T

(d) Comparison of number of flip-flops for pipelined designs

LLM HLS CMT

-
[$))
o
o

1000

500

Number of LUTs

oy Olcg """tgengefnmg%ygfsw,,mfmm Sy Mt gy Sk

(f) Comparison of number of lut for pipelined designs

Figure 9: Comparison of hardware resources and latency for LLM-based approaches, Cement, and HLS in both sequential and

pipelined designs

HLS designs and the synthesis of LLM-generated SystemVerilog
and Cement implementations.

4.2 Experiments on PolyBench

The experimental results on the PolyBench benchmark suite is il-
lustrated in Figure 9. Figure 9(a) demonstrates that the LLM-based
approach consistently achieves lower cycle counts for all kernels
compared to HLS in sequential designs. This improvement can be
attributed to the reduction of loop overhead inherent in RTL gener-
ation of HLS. Our method yields an average latency improvement
of 8.41%, with a remarkable maximum improvement of 55.76% in
a certain kernel. While slightly inferior to Cement in some cases,
this can be explained by our deliberate choice to avoid aggressive
optimizations and the inclusion of assisted registers. These design
decisions, while introducing some unnecessary latency, are made
to facilitate better understanding by LLMs and to provide more
comprehensible few-shot examples. For instance, our use of reg-
isters to store read addresses, rather than employing wires and
combinational logic, introduces one cycle latency overhead in each
iteration of sequential designs.

The advantages of our approach become even more pronounced
in pipelined implementations, as shown in Figure 9b. Here, we

observe an average latency reduction of 28.88% compared to HLS,
with a maximum improvement of 66.94%. Notably, our method
also outperforms Cement in pipelined designs, achieving a 5.23%
average improvement and a 45.21% maximum improvement. This
enhanced performance in pipelined versions can be attributed to
the fact that the redundant latency primarily affects the pipeline
initiation, rather than each iteration as in sequential designs.

Other figures provide a comprehensive comparison of hardware
resource utilization. Our LLM-based approach demonstrates sig-
nificant reductions in resource requirements compared to HLS,
enhancing overall utilization efficiency. Specifically, we observe
an average reduction of 25.18% in LUT usage (with a maximum
reduction of 53.31%) and an average reduction of 57.23% in flip-flop
usage (with a maximum reduction of 70.45%). When compared to
Cement, our approach shows advantages in LUT utilization but is
less efficient in flip-flop usage. This discrepancy can be attributed
to Cement’s state compression techniques, which result in more
complex state transition logic with fewer flip-flops but more LUTs.
It’s worth noting that the hardware resource utilization of cement
for the doitgen benchmark appears anomalous.

The effectiveness of our LLM-based approach is evident in the
significant reduction of prompts required to generate for various

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044



1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference’17, July 2017, Washington, DC, USA

benchmarks from the PolyBench suite. Table 2 presents a com-
parative analysis of the number of prompts used in our method
versus the previous work[15]. Our method demonstrates a marked
improvement in efficiency across all benchmarks. For sequential
designs, we achieved successful generation with as few as 1 to 5
prompts, a substantial reduction compared to the 11 to 50 prompts
required in previous work. This efficiency is particularly notable in
complex benchmarks such as syrk, where our approach required
only 4 prompt compared to 50 in the previous study. The pipelined
versions of these designs, which are derived from sequential ones,
are inherently more complex but still maintain a low prompt count
of 4 to 8. It’s worth noting that the atax benchmark required more
attempts in our study, as it was the first benchmark processed
and lacked reference implementations. This highlights the learning
curve in our approach and the potential for further efficiency gains
as the system accumulates more examples.

Table 2: Comparison of the Number of Prompts for LLM-
Based Approaches

Benchmark Sequential Pipelined Previous work [15]

atax 5 8 11
bicg 3 7 16
doitgen 2 7 -

gemm 2 5 22
gemver 2 4 -

gesummyv 2 4 23
2mm 1 5 29
3mm 2 4 21
mvt 1 5 36
syr2k 4 5 20
syrk 4 8 50

In conclusion, our LLM-based approach demonstrates a signif-
icant advancement in hardware design methodology. While HLS
has long been praised for its high-level abstraction, LLM based
hardware design enable an even higher-level description while
simultaneously achieving superior performance. The consistent
improvements in both latency and resource utilization across a di-
verse set of benchmarks underscore the potential of LLM-based ap-
proaches in revolutionizing hardware design processes. Despite the
capabilities of LLM, the complexity of hardware design, particularly
in areas such as pipelining and cycle-accurate implementations,
often requires expert guidance and refinement. Our method, while
showing promise in reducing the number of prompts needed com-
pared to previous work, still relies on human expertise to navigate
the intricacies of hardware-specific concepts and to validate and
optimize the generated designs.

5 CONCLUSION

This paper demonstrates the potential of LLMs for generating
FPGA hardware designs, providing significant improvements in
design efficiency and performance compared to traditional HLS
tools through an empirical comparision of LLM-based hardware
Design and HLS. Despite the inherent challenges posed by the
software-centric training of these models, our structured and itera-
tive methodology, which integrates guided prompts, step-by-step

10

Anon.

breakdowns, and human interventions, has enabled the effective
generation of complex FPGA kernels. The experimental results
show that our LLM-based approach significantly reduces latency
and resource utilization compared to HLS-generated designs, espe-
cially in pipelined implementations. It achieves an average latency
reduction of 28.88% relative to HLS, with a maximum reduction of
66.94% in pipelined designs and an average reduction of 8.41%, peak-
ing at 55.76% in sequential stages. Additionally, it achieves a 25.18%
average reduction in LUT usage and a 57.23% decrease in flip-flop
usage compared to HLS. Furthermore, our approach requires fewer
prompts for kernel generation, demonstrating improved efficiency
and scalability over previous LLM-based methods. In conclusion,
our study contributes to bridging the gap between high-level algo-
rithmic descriptions and efficient FPGA implementations, we hope
it will serve as a useful foundation for further advancements.

REFERENCES

[1] Anthropic. 2024. Claude 3.5 Sonnet. https://www.anthropic.com/news/claude-
3-5-sonnet

[2] Anthropic. 2024. Introducing the next generation of Claude.
anthropic.com/news/claude-3-family

[3] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: high-
level synthesis for FPGA-based processor/accelerator systems. In Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable gate arrays.
33-36.

[4] Luca Collini, Siddharth Garg, and Ramesh Karri. 2024. C2HLSC: Can LLMs
Bridge the Software-to-Hardware Design Gap? arXiv preprint arXiv:2406.09233
(2024).

[5] Fan Cui, Chenyang Yin, Kexing Zhou, Youwei Xiao, Guangyu Sun, Qiang Xu,
Qipeng Guo, Demin Song, Dahua Lin, Xingcheng Zhang, et al. 2024. OriGen:
Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-
Reflection. arXiv preprint arXiv:2407.16237 (2024).

[6] Steve Dai and Zhiru Zhang. 2019. Improving scalability of exact modulo sched-
uling with specialized conflict-driven learning. In Proceedings of the 56th Annual
Design Automation Conference 2019. 1-6.

[7] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.
{NICA}: An infrastructure for inline acceleration of network applications. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). 345-362.

[8] Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi,
Michele Fiorito, Marco Lattuada, Marco Minutoli, Christian Pilato, and Antonino
Tumeo. 2021. Bambu: an open-source research framework for the high-level
synthesis of complex applications. In 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1327-1330.

[9] Hsuan Hsiao and Jason Anderson. 2019. Thread weaving: Static resource sched-
uling for multithreaded high-level synthesis. In Proceedings of the 56th Annual
Design Automation Conference 2019. 1-6.

[10] Intel. [n.d.]. Intel High Level Synthesis Compiler. https://www.intel.

com/content/www/us/en/software/programmable/quartus- prime/hls-

compiler.html

Liancheng Jia, Zizhang Luo, Ligiang Lu, and Yun Liang. 2021. Tensorlib: A spatial

accelerator generation framework for tensor algebra. In 2021 58th ACM/IEEE

Design Automation Conference (DAC). IEEE, 865-870.

Liancheng Jia, Yuyue Wang, Jingwen Leng, and Yun Liang. 2022. EMS: efficient

memory subsystem synthesis for spatial accelerators. In Proceedings of the 59th

ACM/IEEE Design Automation Conference. 67-72.

[13] Lana Josipovi¢, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically sched-

uled high-level synthesis. In Proceedings of the 2018 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. 127-136.

Sakari Lahti, Panu Sjovall, Jarno Vanne, and Timo D Hamél4inen. 2018. Are we

there yet? A study on the state of high-level synthesis. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 38, 5 (2018), 898-911.

[15] Yuchao Liao, Tosiron Adegbija, and Roman Lysecky. 2024. Are LLMs Any Good

for High-Level Synthesis? arXiv preprint arXiv:2408.10428 (2024).

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. 2023. Ver-

ilogeval: Evaluating large language models for verilog code generation. In 2023

IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE,

1-8.

[17] Mingjie Liu, Yun-Da Tsai, Wenfei Zhou, and Haoxing Ren. 2024. CraftRTL:
High-quality Synthetic Data Generation for Verilog Code Models with Correct-
by-Construction Non-Textual Representations and Targeted Code Repair. arXiv

https://www.

[11

[12

(14

[16

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160


https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

An Empirical Comparision of LLM-based Hardware Design and High-level Synthesis

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

preprint arXiv:2409.12993 (2024).

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie.
2023. Rtlcoder: Outperforming gpt-3.5 in design rtl generation with our open-
source dataset and lightweight solution. arXiv preprint arXiv:2312.08617 (2023).
OpenAlL 2024. chatgpt-4o. https://openai.com/index/hello-gpt-40/

Benjamin Carrion Schafer and Zi Wang. 2019. High-level synthesis design space
exploration: Past, present, and future. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 10 (2019), 2628-2639.

Sneha Swaroopa, Rijoy Mukherjee, Anushka Debnath, and Rajat Subhra
Chakraborty. 2024. Evaluating Large Language Models for Automatic Reg-
ister Transfer Logic Generation via High-Level Synthesis. arXiv preprint
arXiv:2408.02793 (2024).

Shuo Wang, Yun Liang, and Wei Zhang. 2017. FlexCL: An analytical performance
model for OpenCL workloads on flexible FPGAs. In Proceedings of the 54th Annual
Design Automation Conference 2017. 1-6.

Stephen Williams and Michael Baxter. 2002. Icarus verilog: open-source verilog
more than a year later. Linux Journal 2002, 99 (2002), 3.

Youwei Xiao, Zizhang Luo, Kexing Zhou, and Yun Liang. 2024. Cement: Stream-
lining FPGA Hardware Design with Cycle-Deterministic eHDL and Synthesis.
In Proceedings of the 2024 ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays. 211-222.

AMD Xilinx. 2023. Vitis High-Level Synthesis User Guide (UG1399). https:
//docs.xilinx.com/r/en-US/ug1399-vitis- hls

Chenwei Xiong, Cheng Liu, Huawei Li, and Xiaowei Li. 2024. HLSPilot: LLM-
based High-Level Synthesis. arXiv preprint arXiv:2408.06810 (2024).

Ruifan Xu, Youwei Xiao, Jin Luo, and Yun Liang. 2022. HECTOR: A multi-
level intermediate representation for hardware synthesis methodologies. In
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
Design. 1-9.

Xinyi Zhang, Yawen Wu, Peipei Zhou, Xulong Tang, and Jingtong Hu. 2021.
Algorithm-hardware co-design of attention mechanism on FPGA devices. ACM
Transactions on Embedded Computing Systems (TECS) 20, 5s (2021), 1-24.

11

Conference’17, July 2017, Washington, DC, USA

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276


https://openai.com/index/hello-gpt-4o/
https://docs. xilinx. com/r/en-US/ug1399-vitis-hls
https://docs. xilinx. com/r/en-US/ug1399-vitis-hls

