
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

An Empirical Comparision of LLM-based Hardware Design and
High-level Synthesis

Anonymous Author(s)

ABSTRACT
Field-Programmable Gate Arrays (FPGAs) are increasingly used
for accelerating diverse applications due to their reconfigurability
and ability to implement custom hardware architectures. However,
programming FPGAs remains challenging, traditionally relying
on low-level Hardware Description Languages (HDLs) like Ver-
ilog, which are intricate and time-consuming. High-Level Synthesis
(HLS) tools, such as Vitis HLS, have emerged to address these is-
sues by allowing hardware functionality description in high-level
languages like C/C++, but they come with their own limitations,
including less efficient hardware implementations, delay overhead
caused by conservative scheduling strategies, and unpredictable
solutions due to semantic differences between software and hard-
ware.

This paper explores the potential of Large Language Models
(LLMs) in FPGA design, particularly for generating complex Verilog
kernels. We present a novel approach that guides LLMs to generate
synthesizable and efficient Verilog code for complex FPGA kernels.
Our method addresses key challenges in LLM-based hardware de-
sign. Through a case study on the PolyBench suite, we demonstrate
that our LLM-guided approach can generate HDL implementations
that surpass HLS tools in performance and resource utilization. The
experimental results show that our approach reduces latency by an
average of 28.88% compared to HLS, with a maximum reduction
of 66.94% in pipelined designs and an average reduction of 8.41%,
peaking at 55.76% in sequential stages. Furthermore, it decreases
LUT usage by an average of 25.18% and flip-flop usage by 57.23%
compared to HLS.

1 INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) have emerged as power-
ful platforms for accelerating a wide range of applications across
domains such as artificial intelligence, high-performance comput-
ing, and data processing. [7, 28] Their reconfigurability and abil-
ity to implement custom hardware architectures make them ideal
for adopting cutting-edge microarchitectural technologies to meet
the demands of emerging applications. However, despite their ef-
fectiveness, programming FPGAs remains a significant challenge,
hindering their wider adoption and utilization.

Traditionally, FPGA design has relied on Hardware Description
Languages (HDLs) such as Verilog and VHDL. HDLs are praised for
their ability to provide circuit representations that closely mimic
inherent hardware structures, offering several advantages. They
generally produce high-quality results in terms of performance and
resource usage, allow fine-grained control over hardware imple-
mentation details, and give designers a deep understanding of the
underlying hardware architecture. However, the low-level nature
of HDL programming requires designers to manage intricate details
of hardware implementation, leading to lower productivity due to
longer development times and a more complex, time-consuming

verification process. It also demands in-depth hardware design ex-
pertise, making it challenging to explore different architectural
options quickly. Additionally, maintaining and modifying HDL de-
signs can be more difficult compared to higher-level approaches.

In response to these challenges, High-Level Synthesis (HLS)
tools [3, 8, 22, 27], such as Vitis HLS [25], have emerged as an
alternative approach, attempting to raise the abstraction level of
hardware design to the software domain. HLS allows designers to
use high-level programming languages like C or C++ to describe
hardware functionality, which is then automatically translated into
Register-Transfer Level (RTL) representations. It significantly in-
creases productivity, and reduce the learning curve for FPGA pro-
gramming compared to HDLs programming. Besides, it enables
faster design space exploration through tool directives and con-
straints, and simplifies the verification process by often allowing
the use of software-level verification tools. It’s more accessible to
software engineers, lowering the barrier for hardware design, and
facilitates faster prototyping and shorter time-to-market [11, 12].
HLS also makes it easier to target new platforms or adapt to chang-
ing requirements, and reduces the likelihood of introducing bugs
due to its higher abstraction level.

However, HLS is not without its drawbacks [14]. The quality
of HLS-generated designs often lags behind hand-crafted RTL in
terms of performance and resource usage, and designers have less
direct control over hardware implementation details, which can
be obfuscated. HLS is highly tool-dependent, with results varying
significantly between different tools, and it may struggle with cer-
tain types of algorithms, especially those with dynamic behaviors.
Additionally, HLS requires C/C++ code to be written in a specific,
synthesizable style, which can lack hardware awareness and lead
to challenges in exploiting FPGA parallelism, resulting in less ef-
ficient hardware implementations compared to hand-coded RTL.
Furthermore, the semantic differences between software and hard-
ware domains can sometimes lead to unpredictable or suboptimal
solutions.

Given these challenges in both HDL and HLS approaches, there
is a growing interest in exploring alternative methodologies for
FPGA design [4, 21, 26]. One such promising avenue is the appli-
cation of Large Language Models (LLMs) to hardware description
languages [5, 16–18]. LLMs, which have demonstrated remarkable
capabilities in natural language processing and code generation
tasks, present an intriguing possibility for bridging the gap between
high-level design intent and low-level hardware implementation.
The potential of LLMs in FPGA design lies in their ability to under-
stand and generate code based on natural language descriptions or
high-level specifications. This approach could potentially combine
the high-level abstraction benefits of HLS with the fine-grained
control and efficiency of HDLs. By leveraging the contextual under-
standing and pattern recognition capabilities of LLMs, designers
could potentially express their design intent in natural language

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

or high-level pseudocode, which the LLM could then translate into
efficient and user-friendly HDL code.

However, applying LLMs to hardware design, particularly for
complex FPGA kernels, presents its own set of challenges and oppor-
tunities that warrant thorough investigation. The primary obstacle
is the scarcity of high-quality HDL datasets, which severely con-
strains the capability of LLMs to generate accurate and efficient
code. This limitation stems from the specialized and often propri-
etary nature of hardware design, as well as the relatively smaller
community compared to software development. As a result, there
is a limited pool of high-quality, diverse Verilog code available for
training LLMs. Previous studies have focused on collecting and syn-
thesizing more diverse Verilog code to improve the performance of
these models [5, 17, 18]. However, they primarily concentrated on
simpler modules, leaving a significant gap in addressing complex
hardware designs. Consequently, LLMs trained on available data
often struggle with the intricacies and specific requirements of
HDLs, particularly when it comes to clock-cycle timing constraints,
resource utilization, and microarchitecture optimizations.

Despite these challenges, there is significant potential to over-
come these limitations and leverage LLMs effectively for FPGA
programming. In this paper, we conduct an empirical comparison
of LLM-based hardware design and traditional HLS approaches.
We develop and evaluate specialized prompting methodologies to
guide LLMs in generating more accurate and contextually appro-
priate HDL code. Our approach demonstrates how carefully crafted
prompts can significantly improve the quality and relevance of LLM-
generated Verilog code. Additionally, we propose an integration of
domain-specific knowledge into the LLM pipeline, incorporating
FPGA architecture details, timing constraints, and resource uti-
lization guidelines. This integration enhances the LLMs’ ability to
generate optimized HDL code, bridging the gap between high-level
abstractions and efficient hardware implementations. Our work
introduces and assesses post-processing techniques designed to
refine and optimize LLM-generated code, addressing FPGA-specific
requirements and improving overall code quality. Through a thor-
ough study of the strengths and limitations of LLMs across a diverse
range of FPGA design tasks, we provide insights into the potential
of LLMs to revolutionize FPGA programming.

Our contributions are summarized as follows:

• We conduct a comprehensive analysis of the fundamental
limitations LLMs face when generating complex hardware
HDLs for FPGA kernels.

• We propose a novel, iterative methodology that leverages
LLMs for HDL generation, incorporating step-by-step code
generation, few-shot examples, and targeted human inter-
vention to address the identified limitations and produce
synthesizable, efficient and user-friendly hardware designs.

• We demonstrate that our LLM-guided approach can gener-
ate HDL implementations that surpass HLS tools in terms of
latency and resource utilization for complex FPGA kernels.

The experimental results show that our approach reduces latency by
an average of 28.88% compared to HLS, with a maximum reduction
of 66.94% in pipelined designs and an average reduction of 8.41%,
peaking at 55.76% in sequential stages. Furthermore, it decreases

LUT usage by an average of 25.18% and flip-flop usage by 57.23%
compared to HLS.

2 BACKGROUND
In this section, we discuss programming frameworks for FPGA,
including hardware description languages (HDLs) and High-Level
Synthesis (HLS). Additionally, We introduce the emerging trend
of using Large Language Models (LLMs) for FPGA programming,
highlighting their potential to further simplify and accelerate the
hardware design process.

Table 1 provides a comprehensive comparison of LLM-based
Design, HDLs and HLS across seven key aspects of FPGA program-
ming, illustrating the trade-offs between traditional, emerging, and
intermediate approaches to hardware design.

2.1 FPGA Programming Frameworks
Field-Programmable Gate Array (FPGA) programming has under-
gone significant transformations to address the increasing complex-
ity of hardware designs and the need for improved productivity.
This evolution spans multiple generations of programming frame-
works, each offering different levels of abstraction and control over
hardware implementation.

Traditional HDLs such as Verilog and VHDL primarily operate
at the Register-Transfer Level (RTL). At this level, they describe
digital circuits by specifying the flow of data and control signals
between registers and through combinational logic elements. While
HDLs offer fine-grained control over hardware implementation,
they require designers to manage intricate low-level details. This
approach, although effective, often results in poor productivity and
increased development time, especially for complex designs.

To address the limitations of HDLs, HLS tools [3, 8, 22, 27]
like Vitis HLS [25] and Intel HLS Compiler [10] have been de-
veloped. These tools employ a subset of software languages, such
as C/C++ and SystemC, to describe hardware functionality at a
higher level of abstraction. HLS tools automatically convert these
high-level specifications into HDL representations such as VHDL
or Verilog [6, 9, 13, 27]. This automation simplifies the design of
complex hardware systems, reducing the time and effort required
for low-level coding and allowing designers to optimize and ma-
nipulate designs more efficiently [11, 12]. HLS also facilitates rapid
design space exploration through the use of synthesis directives,
constraints and DSE frameworks [20], enabling designers to quickly
evaluate different implementation trade-offs.

However, there are notable drawbacks to HLS [14]. The hardware
implementations generated by HLS often lack efficiency compared
to hand-coded RTL, primarily due to the higher level of abstraction.
This abstraction can lead to several key limitations. HLS-generated
designs typically require more FPGA resources than their RTL
counterparts due to the inherent overhead associated with RTL
generation in HLS. Consequently, these designs may not efficiently
utilize the hardware’s capabilities. Performance constraints also
present challenges for HLS designs. They frequently exhibit higher
latency than optimized RTL implementations due to the complexi-
ties involved in translating high-level code into hardware. Although
HLS can sometimes achieve comparable performance metrics, it
generally struggles with latency issues. Additionally, achieving

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

An Empirical Comparision of LLM-based Hardware Design and High-level Synthesis Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Aspect LLM-based Design HDL HLS

Abstraction Level Highest; uses natural language
prompts for design description

Low-level; describes hardware at
Register Transfer Level (RTL)

High-level; uses C/C++-like lan-
guages for algorithmic description

Learning Curve Lower; focuses on effective prompt
engineering and iterative refine-
ment

Steep; requires in-depth under-
standing of hardware architecture
and digital logic

Moderate; combines high-level pro-
gramming with hardware design
concepts

Code Quality and
Complexity

Variable; may require significant re-
finement for complex designs

High; allows precise control but can
be verbose for complex systems

High; benefits from years of com-
piler optimizations for efficient
hardware generation

Design Process Flexible and iterative; relies on natu-
ral language interaction and prompt
refinement

Structured and detailed; requires ex-
plicit specification of hardware be-
havior

Algorithmic; focuses on functional-
ity with automated hardware infer-
ence

Optimization Capa-
bilities

Limited; requires explicit guidance
and may not capture all hardware-
specific optimizations

Extensive; allows fine-grained con-
trol over optimizations but requires
manual implementation

Strong; incorporates built-in opti-
mizations for various hardware ar-
chitectures

Productivity Potentially high for simple to mod-
erate designs; faster initial prototyp-
ing

Lower for complex designs; time-
consuming to write and verify de-
tailed RTL code

High for complex algorithmic de-
signs; accelerates development of
computation-intensive systems

Scalability Suitable for small to medium de-
signs; may face challenges with
very large or intricate systems

Highly scalable but requires signifi-
cant manual effort for large designs

Scalable and efficient for large,
algorithm-centric designs; may
have limitations for fine-grained
control

Table 1: Comparison between LLM-based hardware design, HDL, and HLS

precise control over timing and resource allocation can be more
challenging with HLS compared to direct HDL programming [24].

2.2 LLMs for FPGA Programming
Large Language Models (LLMs) have emerged as powerful tools for
code generation across various programming languages. Trained on
vast amounts of code and natural language data, these models can
learn the statistical patterns and relationships within the training
data, enabling them to generate code that adheres to the syntax
and style of the target programming language.

The application of LLMs to HLS spans various stages of the
design process, from high-level specification to hardware verifica-
tion [4, 21, 26]. LLMs have demonstrated significant potential in
facilitating and optimizing the high-level synthesis (HLS) process
for FPGAs by automating the conversion of high-level programming
languages into hardware-compatible code. By leveraging their code
generation capabilities, LLMs can effectively assist in transforming
standard C/C++ code into HLS-compatible formats. This transfor-
mation process involves refactoring constructs that are not directly
supported by HLS tools, such as dynamic memory allocation and
recursion, into forms suitable for hardware implementation. More-
over, LLMs can be integrated into pipelines to automate the entire
FPGA HLS workflow, from specification generation to optimiza-
tion and deployment. These models can generate HLS-compatible
code from natural language descriptions or standard C/C++ code,
allowing software engineers to engage in hardware design with
reduced expertise requirements. In the realm of hardware verifica-
tion, LLMs show promise in automating the generation of test cases
and identifying potential design flaws. This application could lead
to more thorough and efficient verification processes, crucial for

ensuring the reliability of complex hardware designs. Additionally,
LLMs are being explored as assistants in design space exploration,
suggesting optimizations and exploring design alternatives based
on specified constraints and objectives.

Apart from integrating LLMs into HLS workflows, researchers
in the field of hardware design have shown a growing interest in
leveraging LLMs for generating Hardware Description Languages
(HDLs) directly. The quality of the generated code depends heavily
on the quality and quantity of the training data. However, the hard-
ware design community is significantly smaller and more closed-
source than the mainstream programming languages community,
resulting in a limited pool of high-quality and diverse Verilog code
for training LLMs. Furthermore, LLMs trained on large amounts of
software code tend to be biased towards producing software-like
Verilog code. This bias can lead to inefficiencies in FPGA program-
ming, as LLMsmay not fully grasp the inherent parallelism of HDLs,
which is crucial for efficient hardware design. To address these chal-
lenges, several studies have attempted to synthesize high-quality
Verilog datasets using LLMs [5, 16–18]. While these efforts have
yielded improvements in generating smaller modules, they still
struggle with complex kernels. The generated code often fails to
meet the stringent requirements of sophisticated hardware designs.

Recognizing these limitations, some researchers [4, 15, 21] have
emphasized the necessity of expert guidance for complex kernels.
However, the lack of an efficient approach has led to scenarios
where designers spend a significant number of prompts and consid-
erable effort guiding LLMs to generate correct code, which is highly
inefficient and time-consuming. Our research addresses this gap by
exploring more effective methods for utilizing LLMs in FPGA pro-
gramming. We propose that while LLMs may not yet be capable of

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

fully generating correct code without expert guidance, employing
the right methods can drastically reduce the number of prompts
required. Moreover, our approach produce hardware code with
resource utilization and latency performance compared to tradi-
tional methods. By focusing on optimizing the interaction between
human experts and LLMs, we seek to leverage the strengths of both
to create a more efficient and effective FPGA programming process.
This approach not only addresses the current limitations of LLMs
in hardware design but also paves the way for future advancements
in the field, potentially revolutionizing the way complex FPGA
designs are developed and optimized.

3 METHODOLOGY
In this section, we present a detailed introduction to our experi-
mental methodology. In subsection 3.1, we discuss the limitations
of applying LLMs to complex HDLs in FPGA kernels. subsection 3.2
details the step-by-step process of our generation methodology.
Finally, in subsection 3.3, we provide an in-depth case study of
a kernel from PolyBench to illustrate our approach in a practical
context.

3.1 Limitations of LLM
The application of LLMs to generate complex HDL FPGA kernels
faces significant challenges, primarily stemming from the models’
training on software-centric datasets. Even the most advanced mod-
els, such as Claude3.5-Sonnet [2] and GPT-4o [19], can generate
hardware code correctly for most relatively small-scale modules
but tend to generate software-like HDLs when faced with complex
kernels. These limitations are primarily due to the fundamental
differences between software and hardware paradigms. Software
paradigms focus on sequential execution and high-level abstrac-
tions, whereas hardware paradigms require parallelism, timing
control, and resource constraints to ensure synthesizability and
efficiency. Figure 1 illustrates two common issues:

Resource Insensitivity. As shown in Figure 1a, LLMs tend to
describe hardware using software-like constructs, such as multi-
dimensional arrays (A [0:7][0:7]), rather than employing hardware-
specific port and address specifications. This approach, while in-
tuitive from a software perspective, fails to align with hardware
programming guidelines necessary for synthesizing efficient IP
cores. Efficient FPGA designs require careful consideration of re-
source allocation, timing constraints, and parallel processing capa-
bilities—aspects that software-trained LLMs struggle to incorporate
inherently.

Syntax Errors. The examples in Figure 1b and Figure 1c illus-
trate the propensity of LLMs to misapply software-specific syntax
in hardware descriptions, leading to syntax errors in HDL code gen-
eration. Figure 1b demonstrates a common issue in LLM-generated
testbenches for hardware like the atax kernel. Here, the model in-
correctly employs the software increment operator i++, which is
invalid in Verilog. The correct hardware syntax requires explicit as-
signment, such as i = i + 1. This misalignment between software
and hardware syntax conventions often results in non-synthesizable
code. Furthermore, LLMs trained on software paradigms struggle
to grasp hardware-specific concepts such as loop unrolling or the
implementation of loops as state machines, which are crucial for

module atax_kernel(
input wire clk,
input wire reset,
input wire start,
input wire [31:0] A [0:7][0:7],
input wire [31:0] x [0:7],
output reg [31:0] y [0:7],
output reg done

);

(a) IO Port Issue

for (int i = 0; i < 8; i++) begin
for (int j = 0; j < 8; j++) begin

A[i][j] = i * 8 + j + 1;
x[i] = i + 1;

end

(b) Loop Counter Issue

module incorrect_wire_assignment(
input wire clk,
input wire reset,
input wire [31:0] a,
input wire [31:0] b,
output wire [31:0] result

);
always @(posedge clk or posedge reset) begin

if (reset) begin
result = 32'b0;

end else begin
result = a + b;

end
end

endmodule

(c) Incorrect wire assignment in always block

Figure 1: Limitations of LLM-generated Verilog code influ-
enced by software-like patterns

efficient FPGA designs. A more fundamental misunderstanding
of hardware concepts is evident in Figure 1c. This example re-
veals LLMs’ difficulty in distinguishing between wire and register
assignments in sequential logic—a cornerstone principle of HDL
design. The generated code erroneously attempts to assign values
to wires within sequential blocks, a practice that violates basic HDL
principles and leads to non-functional designs. This type of error
represents one of the most prevalent issues in LLM-generated HDL
code, underscoring the significant gap between software-oriented
training data and the specific requirements of hardware description
languages.

Insufficient Awareness of Clock Cycles and Register Prop-
erties. Another critical limitation of LLMs in generating HDL code
is their inadequate understanding of clock cycle behavior and reg-
ister properties inherent to hardware design. This deficiency often
leads to functionally incorrect or inefficient implementations, par-
ticularly in complex pipelined designs. Figure 2 illustrates part of
an atax kernel implementation in SystemVerilog, highlighting two
significant issues that stem from this limitation:

Misunderstanding of Pipeline Cycle Relationships. In the example,
the LLM-generated code incorrectly sets the condition for complet-
ing a pipeline stage as j == N - 1. This demonstrates a fundamental
misunderstanding of how pipeline stages relate to clock cycles in
hardware. The correct condition should be j == N, accounting for
the two-cycle latency of the single-cycle multiplier and register-
based address storage in the matrix-vector product calculation. This
error reveals that the LLM is treating the hardware implementation

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

An Empirical Comparision of LLM-based Hardware Design and High-level Synthesis Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

COMPUTE_TMP: begin
if (j == 0) begin

acc <= 32'b0;
we_tmp <= 0;

end else begin
acc <= acc + mult_p;

end

if (j == N - 1) begin
j <= 0;
we_tmp <= 1;
di_tmp <= acc + mult_p;
addr_tmp_in <= i;
addr_x_out <= 0;

if (i == N - 1) begin
i <= 0;
addr_a_out <= 0;
state <= COMPUTE_Y;

end else begin
i <= i + 1;
addr_a_out <= i * N;

end
end else begin

j <= j + 1;
addr_a_out <= addr_a_out + 1;
addr_x_out <= addr_x_out + 1;

end
end

Figure 2: Example of Insufficient Awareness of Clock Cycles
and Register Properties

as if it were software, assuming N operations can be completed
in N iterations. In reality, this pipeline requires N executions with
an interval of 1 and a latency of 2 for each execution. The LLM’s
software-centric approach fails to account for the temporal aspects
of hardware execution, potentially leading to incorrect results or
timing issues in the synthesized design.

Overlooking Register Update Timing. The second issue pertains to
the property of registers and the timing of their value updates. In
the code, the counter i is a register using non-blocking assignment
(<=). However, the LLM fails to account for the fact that the value
of i will not be updated until the next clock cycle. This is evident
in the line addr_a_out <= i * N, where the LLM assumes an
immediate update of i. In hardware design, it’s crucial to consider
that register values change only on clock edges, and these changes
are not immediately reflected in subsequent operations within the
same clock cycle. This oversight can lead to off-by-one errors or
more complex timing issues in the implemented design.

These limitations highlight a significant disconnect between the
software-centric training of LLMs and the specialized requirements
of hardware description languages. The gap becomes increasingly
problematic as the complexity of hardware designs grows, making
it crucial to address these challenges for the successful application
of LLMs in FPGA programming.

Despite these challenges, there exist viable strategies to mitigate
each of these limitations:

Resource Insensitivity. To address the LLMs’ tendency to gen-
erate resource-inefficient HDL code, we can implement a guided
approach that incorporates hardware-aware constraints and opti-
mization goals into the prompts. By providing specific guidelines
and clear definitions of the expected IP characteristics, we can
steer LLMs towards producing more resource-efficient designs. This
method leverages the LLMs’ ability to adapt to detailed instructions

while compensating for their lack of inherent hardware resource
understanding.

Syntax Errors. The prevalence of software-specific syntax in
LLM-generated HDL can be mitigated through an iterative feedback
process. By feeding compiler error messages back to the LLM and
requests corrections, many syntax errors can be resolved without
extensive human intervention. This approach not only corrects
immediate errors but also helps the LLM learn and adapt to HDL-
specific syntax over time, potentially improving its performance in
subsequent code generation tasks.

Insufficient Awareness of Clock Cycles and Register Prop-
erties. This limitation, being the most complex, often requires a
combination of strategies. We propose a two-pronged approach: a)
Develop specialized prompts that explicitly highlight the tempo-
ral nature of hardware execution, emphasizing concepts such as
clock synchronization and parallel processing. b) Integrate human
expertise into the process to identify cycle-related errors and pro-
vide clear, cycle-accurate explanations to the LLM. This approach
ensures that subtle timing issues are addressed and helps guide the
LLM towards a more accurate understanding of hardware execution
principles.

In the following sections, we will detail our methodology for
implementing these solutions. We will provide concrete examples
of how each strategy is applied in practice, showcasing the poten-
tial of LLM-assisted hardware design when properly guided and
constrained.

3.2 Generation Flow
Our generation methodology, as illustrated in Figure 3, addresses
the limitations of LLMs in hardware design through a structured,
iterative approach that minimizes the need for human interven-
tion while maximizing the LLM’s ability to generate accurate and
efficient hardware designs.

The process begins with a C++ kernel to be generated, which the
LLM analyzes to produce a step-by-step description of the code’s
behavior. This description is crucial, as it breaks down complex ker-
nels into manageable stages, allowing the LLM to focus on smaller,
more tractable parts of the design. This approach directly addresses
the LLM’s tendency to generate software-like solutions when faced
with complex hardware tasks.

For each stage of the kernel, the LLM is tasked with generat-
ing both RTL code and a corresponding testbench. The RTL code
is required to include comments that explicitly address clock cy-
cle behavior, forcing the LLM to consider timing and state in a
hardware-specific context. This step-by-step generation process,
combined with cycle-aware commenting, significantly improves
the LLM’s awareness of clock cycles and register properties - a
key limitation we identified earlier. The testbench for each stage
serves a dual purpose: it verifies the correctness of the generated
RTL and provides a mechanism for the LLM to self-correct. If a
stage fails verification, the LLM is prompted to print intermediate
variables and debug its own code. This self-correction mechanism
is a critical feature of our methodology, as it minimizes the need
for human intervention and allows the LLM to learn from its mis-
takes. Human guidance is reserved for situations where the LLM
fails to self-correct or when hardware-specific optimizations, such

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 3: Overview of Generation Methodology
.

as pipelining, are required. This targeted use of human expertise
ensures that the process remains largely automated while still ben-
efiting from specialized knowledge when necessary.

Resource constraints and cycle behavior specifications for the
desired IP are provided in the documentation available to the LLM.
This information helps address the resource insensitivity issue
we previously identified, guiding the LLM towards more efficient
hardware implementations from the outset.

The optimization process is also iterative. The LLM first gener-
ates a base sequential implementation, which serves as a foundation
for more optimized versions. These optimizations are developed
through a combination of LLM-generated improvements, guided by
the sequential baseline, relevant documentation, and targeted hu-
man input. Once the full RTL code passes verification, it undergoes
synthesis and implementation in Vivado, generating a resource
utilization report.

It it to be noticed that a key strength of this methodology is its
ability to leverage previously generated designs. As more kernels
are successfully implemented, they serve as few-shot examples for
the LLM. For new designs, the most similar previously generated
kernel is used as a reference, often allowing the LLM to gener-
ate complete kernels and testbenches in just one or two prompts,
without the need for step-by-step separation. For entirely new or
complex kernels without close analogs, the step-by-step approach is
still employed. In these cases, a related generated hardware design
is still provided as a reference, helping the LLM understand the
general structure and expectations of hardware implementations.

This comprehensive approach not only addresses the limita-
tions of LLMs in hardware design but also creates a scalable, self-
improving system. By focusing on manageable steps, incorporating
self-correction mechanisms, and building a library of reference
designs, our methodology enables LLMs to generate increasingly
complex and efficient FPGA kernels with minimal human interven-
tion.

3.3 Case Study
In this section, we present a detailed case study that illustrates the
practical application of our LLM-based hardware design methodol-
ogy. This case study focuses on the generation and optimization of
the gemver kernel, demonstrating each step of our process.

We begin by demonstrating how to generate a testbench for
the gemver kernel. Figure 4 displays the prompt used to instruct

the LLM in this task. This prompt provides the LLM with the key
operations of the gemver kernel, extracted from the Polybench
benchmark suite. Importantly, it also directs the LLM to refer to a
previously generated gemm testbench as a reference, which pro-
vides the LLM with guidance on the structure, variable declarations,
and verification techniques typical in hardware design testbenches.
By leveraging this prior knowledge, we enable the LLM to generate
a more accurate and syntactically correct testbench for the new
kernel.

Here are the key operations of the gemver testbench in

Polybench.
#pragma scop

for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; j++)
A[i][j] = A[i][j] + u1[i] * v1[j] + u2[i] * v2[j];

for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; j++)
x[i] = x[i] + beta * A[j][i] * y[j];

for (i = 0; i < _PB_N; i++)
x[i] = x[i] + z[i];

for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; j++)
w[i] = w[i] + alpha * A[i][j] * x[j];

#pragma endscop
Please write a testbench for it, you can refer to the gemm

testbench as follows...

Figure 4: Prompt for generate testbench

After generating the testbench, we proceed to the critical step
of creating the gemver kernel. This process exemplifies how our
methodology addresses the limitations of LLMs in hardware design,
particularly in terms of resource sensitivity and cycle-accurate be-
havior. Figure 5 shows the prompt used to guide the LLM in this
task. This prompt is carefully crafted to address the specific chal-
lenges of hardware design and to leverage the LLM’s capabilities
effectively. It explicitly specifies the use of particular multiplier
and RAM components. This directive ensures that the LLM consid-
ers actual hardware resources in its design, rather than defaulting
to software-like, resource-insensitive implementations. To align
the LLM’s output with realistic hardware constraints and ensure
fair comparisons with HLS tools in delay, we specify a single-cycle

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

An Empirical Comparision of LLM-based Hardware Design and High-level Synthesis Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Please write the gemver kernel further. Here are some

constraints.
1. You need to use the specified multiplier and RAM to perform
multiplication operations and read or write matrices or
vectors.
[documents]...
2. Please note that completing one Multiply-Accumulate (MAC)

operation requires three cycles.
In the first cycle, assign addresses for reading or writing

values; these will not be valid until the second cycle.
During the second cycle, wait for the output from the

single-cycle multiplier.
Finally, in the third cycle, assign the accumulated value. For

further reference, you can consult the 2mm kernel.
3. Please write the code for update A first, which is A[i][j]

= A[i][j] + u1[i] * v1[j] + u2[i] * v2[j]...

You can refer to the gemm kernel as follows ...

Figure 5: Prompt for generate sequential design

COMPUTE_X: begin
// x[i] = x[i] + beta * A[j][i] * y[j] + z[i];
case (stage)

0: begin // First stage: Assign addresses
addr_a_out <= j * N + i;
addr_y_out <= j;
addr_x_out <= i;
addr_z_out <= i;
stage <= 1;
valid_reg <= 0;
we_x <= 0;

end
1: begin // Second stage: Wait for multiplication results

stage <= 2;
end
2: begin // Third stage: Accumulate

acc_x <= (j == 0) ? mult1_p : acc_x + mult1_p;

if (j == N - 1) begin
stage <= 3;

end else begin
j <= j + 1;
stage <= 0;

end
end
3: begin // Fourth stage: Start beta multiplication

stage <= 4;
end
4: begin // Fifth stage: Add z[i] and write result

di_x <= dout_x + mult2_p + dout_z;
we_x <= 1;
addr_x_in <= i;
data_out_reg <= dout_x + mult2_p + dout_z;
valid_reg <= 1;
if (i == N - 1) begin

state <= COMPUTE_W;
i <= 0;
j <= 0;

end else begin
i <= i + 1;
j <= 0;

end
stage <= 0;

end
endcase

end

Figure 6: Code for the COMPUTE_X state in the gemver ker-
nel (sequential implementation)

multiplier. Otherwise, it generates a combinational multiplier by de-
fault. The prompt also provides detailed instructions on the timing
of Multiply-Accumulate (MAC) operations, breaking them down
into a three-cycle process. This level of specificity compels the LLM

to explicitly consider clock cycles and register properties, directly
addressing a major limitation we identified earlier in LLM-based
hardware design. Our step-by-step methodology is evident in the
prompt’s instruction to focus first on the matrix update operation.
This approach helps manage complexity by allowing the LLM to
concentrate on generating correct, efficient code for each part of the
kernel separately. Additionally, the prompt references a previously
generated gemm kernel as an example, similar to the approach used
in testbench generation.

Code of COMPUTE_X state...
Can you implement a pipelined approach for the process between
stage 0 and 2? Currently, completing one Multiply-Accumulate
(MAC) operation requires three cycles. In the first cycle,
addresses are assigned for reading or writing values, but
these will not be valid until the second cycle. The second
cycle waits for the output from a single-cycle multiplier. In
the third cycle, the accumulated value is assigned. As a
result, it takes 3N cycles to perform this operation.

I propose a pipelined method as follows:
- Cycle 0: Assign addresses for accumulation 0.
- Cycle 1: Assign address for accumulation 1 and wait for

multiplication of accumulation 0 (do nothing).
- Cycle 2: Assign address for accumulation 2 and wait for
multiplication of accumulation 1 (do nothing), then assign
accumulated value from cycle 0 to x0.

This pattern continues:
- For each subsequent cycle up to N - 1:

- Assign address of accumulation N -1,
- Wait on multiplication of previous accumulations while

assigning earlier accumulated values accordingly.

In summary:
- Cycle N -1: Wait on multiplication of accumulation N -2 (do

nothing) and assign accumulated value from N -3 to x(N -3).
- Cycle N: Wait on multiplication of accumulation N –11 (do

nothing) and assign accumulated value from N –2 to x(N –2).
- Cycle N +1: Assign accumulated value from N –1 to x(N –1).

This pipelining reduces latency from 3N cycles down to just N

+2 cycles. Please revise your code accordingly.

Figure 7: Prompt for implementing the sequential kernel in
pipeline

Figure 6 shows the Verilog code generated by the LLM for the
COMPUTE_X stage of the gemver kernel in its sequential implemen-
tation. It adheres to the specified hardware constraints and uses a
5-stage process to compute the required operation, carefully man-
aging timing for memory access and multiplication. The design
includes single-cycle multipliers mult1 and mult2, and it imple-
ments the three-cycle MAC operation as requested. By assigning
addresses, waiting for multiplier outputs, accumulating results,
and handling beta multiplication separately, the code showcases
efficient loop control and state transitions. This implementation
reflects the LLM’s ability to generate hardware-aware designs when
provided with appropriate guidance and constraints.

The most challenging aspect was leveraging the LLM for pipeline
optimization. Figure 7 presents the prompt designed to guide the
LLM in implementing a pipelined version of the COMPUTE_X state
in the gemver kernel. Notably, this prompt is itself generated by
the LLM, demonstrating how an abstract pipeline representation
can yield detailed guidelines with minimal human input.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

COMPUTE_X: begin
// x[i] = x[i] + beta * A[j][i] * y[j] + z[i];
case (stage)

0: begin // First stage: Multiply and Accumulate
valid_reg <= 0;
we_x <= 0;
addr_x_out <= i;
addr_z_out <= i;

if (pipeline_stage < N) begin
// Assign addresses for next accumulation
addr_a_out <= j * N + i;
addr_y_out <= j;
j <= j + 1;

end

if (pipeline_stage >= 2) begin
acc_x <= (pipeline_stage == 2) ? mult1_p :

acc_x + mult1_p;
end

if (pipeline_stage == N + 1) begin
pipeline_stage <= 0;
stage <= 1;

end else begin
pipeline_stage <= pipeline_stage + 1;

end
end
1: begin // Second stage: Start beta multiplication

stage <= 2;
end
2: begin // Third stage: Add z[i] and write result

di_x <= dout_x + mult2_p + dout_z;
we_x <= 1;
addr_x_in <= i;
data_out_reg <= dout_x + mult2_p + dout_z;
valid_reg <= 1;
if (i == N - 1) begin

state <= COMPUTE_W;
i <= 0;
j <= 0;

end else begin
i <= i + 1;
j <= 0;

end
stage <= 0;

end
endcase

end

Figure 8: Code for the COMPUTE_X state in the gemver ker-
nel (pipeline implementation)

The prompt begins by referencing the previous sequential im-
plementation, providing context and highlighting the inefficiency
of the current three-cycle Multiply-Accumulate (MAC) operation,
which results in a 3N cycle latency. At its core, the prompt offers
a detailed, cycle-by-cycle breakdown of the proposed pipelined
method, illustrating how overlapping multiple accumulations can
significantly reduce overall latency. This step-by-step explanation
is crucial in guiding the LLM to grasp the concept of hardware
pipelining. By providing a concrete, cycle-specific example of the
pipeline’s operation, the prompt offers the LLM a clear template to
follow.

The LLM-generated pipelined implementation of the COMPUTE_X
state in the gemver kernel is illustrated in Figure 8. It focuses on
pipelining the inner accumulation loop, previously encompassed in
stages 0 to 2, while maintaining the subsequent beta multiplication
and result writing stages. The design introduces a pipeline_stage
variable tomanage concurrent processing, enabling efficient overlap

of multiple accumulations. In the pipeline stage, the code simulta-
neously handles address assignments for the next accumulation,
multiplication waiting, and accumulation of previous results. This
pipelined structure efficiently utilizes hardware resources, reducing
overall latency from 3N to approximately N+2 cycles.

Despite the LLM’s ability to generate complex hardware designs,
the process is not without challenges. The LLM occasionally strug-
gles to understand hardware-specific timing nuances as mentioned
earlier. For instance, it may overlook the inherent one-cycle delay
in registers and multipliers, incorrectly assuming immediate output
validity after input assignment. These timing oversights are par-
ticularly evident in the pipeline implementation, where the LLM
may struggle with the intricate timing requirements of start-up
and shutdown phases, or neglect to reset critical signals. In such
cases, human intervention becomes necessary to refine the LLM-
generated implementation and ensure its correctness and efficiency.

4 EXPERIMENTAL RESULTS
In this section, we present the experimental setup and results for our
comparison of hardware designs generated using LLMs, traditional
HLS tools, and a specialized tool, Cement. We aim to compare
the quality of hardware generated by LLMs with the efficiency of
traditional and state-of-the-art tools in terms of performance and
resource usage. Below, we elaborate on the experiment settings,
evaluation criteria, and present a detailed discussion of the findings.

4.1 Experimental Setup
We conducted our experiments using eleven benchmarks selected
from the PolyBench benchmark suite. These kernels were chosen
for their diverse computational behaviors and control structures,
including various types of branches and loops. This diversity al-
lows us to comprehensively assess the performance and resource
efficiency of the generated circuits across different approaches.
Our experiment aims to compare the quality of hardware designs
generated using three distinct approaches:

(1) An LLM-based approach utilizing Claude 3.5 Sonnet [1],
which employs our methodology to generate System Ver-
ilog.

(2) The Cement framework [24], which allows users to deter-
mine the occurrence cycle time of hardware operations
and generates control logic with lower overhead than that
of HLS, and achieves best results in latency in PolyBench
compared to existing HLS or DSL tools.

(3) A commercial HLS tool Vitis HLS [25].

For our experiments with the PolyBench benchmark suite, we
compare cycle count and resource utilization across three approaches.
For the LLM-based approach, we collect cycle counts by simulating
the produced SystemVerilog code with Icarus Verilog [23]. Cement
cycle counts are estimated using Verilator. Resource utilization for
both the LLM-based approach and Cement is estimated by run-
ning synthesis with Vivado 2022.2, targeting the Virtex UltraScale+
XCVU9P FPGA. For Vitis HLS 2022.2, we collect metrics including
cycle count and resource utilization from the co-simulation and
implementation reports. To ensure fair comparison, we set a consis-
tent target clock period of 7ns across all approaches, including Vitis

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

An Empirical Comparision of LLM-based Hardware Design and High-level Synthesis Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

atax bicg doitgen
gemm

gemver
gesummv

2mm 3mm mvt syr2k
syrk

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 L
at

en
cy LLM HLS CMT

(a) Comparison of latency for sequential designs

atax bicg doitgen
gemm

gemver
gesummv

2mm 3mm mvt syr2k
syrk

0.0

0.5

1.0

N
or

m
al

iz
ed

 L
at

en
cy LLM HLS CMT

(b) Comparison of latency for pipelined designs

atax bicg doitgen
gemm

gemver
gesummv

2mm 3mm mvt syr2k
syrk

0

500

1000

N
um

be
r o

f F
Fs

LLM HLS CMT

(c) Comparison of number of flip-flops for sequential designs

atax bicg doitgen
gemm

gemver
gesummv

2mm 3mm mvt syr2k
syrk

0

500

1000

N
um

be
r o

f F
Fs

LLM HLS CMT

(d) Comparison of number of flip-flops for pipelined designs

atax bicg doitgen
gemm

gemver
gesummv

2mm 3mm mvt syr2k
syrk

0

500

1000

1500

N
um

be
r o

f L
U

Ts

LLM HLS CMT

(e) Comparison of number of lut for sequential designs

atax bicg doitgen
gemm

gemver
gesummv

2mm 3mm mvt syr2k
syrk

0

500

1000

1500
N

um
be

r o
f L

U
Ts

LLM HLS CMT

(f) Comparison of number of lut for pipelined designs

Figure 9: Comparison of hardware resources and latency for LLM-based approaches, Cement, and HLS in both sequential and
pipelined designs

HLS designs and the synthesis of LLM-generated SystemVerilog
and Cement implementations.

4.2 Experiments on PolyBench
The experimental results on the PolyBench benchmark suite is il-
lustrated in Figure 9. Figure 9(a) demonstrates that the LLM-based
approach consistently achieves lower cycle counts for all kernels
compared to HLS in sequential designs. This improvement can be
attributed to the reduction of loop overhead inherent in RTL gener-
ation of HLS. Our method yields an average latency improvement
of 8.41%, with a remarkable maximum improvement of 55.76% in
a certain kernel. While slightly inferior to Cement in some cases,
this can be explained by our deliberate choice to avoid aggressive
optimizations and the inclusion of assisted registers. These design
decisions, while introducing some unnecessary latency, are made
to facilitate better understanding by LLMs and to provide more
comprehensible few-shot examples. For instance, our use of reg-
isters to store read addresses, rather than employing wires and
combinational logic, introduces one cycle latency overhead in each
iteration of sequential designs.

The advantages of our approach become even more pronounced
in pipelined implementations, as shown in Figure 9b. Here, we

observe an average latency reduction of 28.88% compared to HLS,
with a maximum improvement of 66.94%. Notably, our method
also outperforms Cement in pipelined designs, achieving a 5.23%
average improvement and a 45.21% maximum improvement. This
enhanced performance in pipelined versions can be attributed to
the fact that the redundant latency primarily affects the pipeline
initiation, rather than each iteration as in sequential designs.

Other figures provide a comprehensive comparison of hardware
resource utilization. Our LLM-based approach demonstrates sig-
nificant reductions in resource requirements compared to HLS,
enhancing overall utilization efficiency. Specifically, we observe
an average reduction of 25.18% in LUT usage (with a maximum
reduction of 53.31%) and an average reduction of 57.23% in flip-flop
usage (with a maximum reduction of 70.45%). When compared to
Cement, our approach shows advantages in LUT utilization but is
less efficient in flip-flop usage. This discrepancy can be attributed
to Cement’s state compression techniques, which result in more
complex state transition logic with fewer flip-flops but more LUTs.
It’s worth noting that the hardware resource utilization of cement
for the doitgen benchmark appears anomalous.

The effectiveness of our LLM-based approach is evident in the
significant reduction of prompts required to generate for various

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

benchmarks from the PolyBench suite. Table 2 presents a com-
parative analysis of the number of prompts used in our method
versus the previous work[15]. Our method demonstrates a marked
improvement in efficiency across all benchmarks. For sequential
designs, we achieved successful generation with as few as 1 to 5
prompts, a substantial reduction compared to the 11 to 50 prompts
required in previous work. This efficiency is particularly notable in
complex benchmarks such as syrk, where our approach required
only 4 prompt compared to 50 in the previous study. The pipelined
versions of these designs, which are derived from sequential ones,
are inherently more complex but still maintain a low prompt count
of 4 to 8. It’s worth noting that the atax benchmark required more
attempts in our study, as it was the first benchmark processed
and lacked reference implementations. This highlights the learning
curve in our approach and the potential for further efficiency gains
as the system accumulates more examples.

Table 2: Comparison of the Number of Prompts for LLM-
Based Approaches

Benchmark Sequential Pipelined Previous work [15]

atax 5 8 11
bicg 3 7 16
doitgen 2 7 -
gemm 2 5 22
gemver 2 4 -
gesummv 2 4 23
2mm 1 5 29
3mm 2 4 21
mvt 1 5 36
syr2k 4 5 20
syrk 4 8 50

In conclusion, our LLM-based approach demonstrates a signif-
icant advancement in hardware design methodology. While HLS
has long been praised for its high-level abstraction, LLM based
hardware design enable an even higher-level description while
simultaneously achieving superior performance. The consistent
improvements in both latency and resource utilization across a di-
verse set of benchmarks underscore the potential of LLM-based ap-
proaches in revolutionizing hardware design processes. Despite the
capabilities of LLM, the complexity of hardware design, particularly
in areas such as pipelining and cycle-accurate implementations,
often requires expert guidance and refinement. Our method, while
showing promise in reducing the number of prompts needed com-
pared to previous work, still relies on human expertise to navigate
the intricacies of hardware-specific concepts and to validate and
optimize the generated designs.

5 CONCLUSION
This paper demonstrates the potential of LLMs for generating
FPGA hardware designs, providing significant improvements in
design efficiency and performance compared to traditional HLS
tools through an empirical comparision of LLM-based hardware
Design and HLS. Despite the inherent challenges posed by the
software-centric training of these models, our structured and itera-
tive methodology, which integrates guided prompts, step-by-step

breakdowns, and human interventions, has enabled the effective
generation of complex FPGA kernels. The experimental results
show that our LLM-based approach significantly reduces latency
and resource utilization compared to HLS-generated designs, espe-
cially in pipelined implementations. It achieves an average latency
reduction of 28.88% relative to HLS, with a maximum reduction of
66.94% in pipelined designs and an average reduction of 8.41%, peak-
ing at 55.76% in sequential stages. Additionally, it achieves a 25.18%
average reduction in LUT usage and a 57.23% decrease in flip-flop
usage compared to HLS. Furthermore, our approach requires fewer
prompts for kernel generation, demonstrating improved efficiency
and scalability over previous LLM-based methods. In conclusion,
our study contributes to bridging the gap between high-level algo-
rithmic descriptions and efficient FPGA implementations, we hope
it will serve as a useful foundation for further advancements.

REFERENCES
[1] Anthropic. 2024. Claude 3.5 Sonnet. https://www.anthropic.com/news/claude-

3-5-sonnet
[2] Anthropic. 2024. Introducing the next generation of Claude. https://www.

anthropic.com/news/claude-3-family
[3] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,

Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: high-
level synthesis for FPGA-based processor/accelerator systems. In Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable gate arrays.
33–36.

[4] Luca Collini, Siddharth Garg, and Ramesh Karri. 2024. C2HLSC: Can LLMs
Bridge the Software-to-Hardware Design Gap? arXiv preprint arXiv:2406.09233
(2024).

[5] Fan Cui, Chenyang Yin, Kexing Zhou, Youwei Xiao, Guangyu Sun, Qiang Xu,
Qipeng Guo, Demin Song, Dahua Lin, Xingcheng Zhang, et al. 2024. OriGen:
Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-
Reflection. arXiv preprint arXiv:2407.16237 (2024).

[6] Steve Dai and Zhiru Zhang. 2019. Improving scalability of exact modulo sched-
uling with specialized conflict-driven learning. In Proceedings of the 56th Annual
Design Automation Conference 2019. 1–6.

[7] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.
{NICA}: An infrastructure for inline acceleration of network applications. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). 345–362.

[8] Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi,
Michele Fiorito, Marco Lattuada, Marco Minutoli, Christian Pilato, and Antonino
Tumeo. 2021. Bambu: an open-source research framework for the high-level
synthesis of complex applications. In 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1327–1330.

[9] Hsuan Hsiao and Jason Anderson. 2019. Thread weaving: Static resource sched-
uling for multithreaded high-level synthesis. In Proceedings of the 56th Annual
Design Automation Conference 2019. 1–6.

[10] Intel. [n. d.]. Intel High Level Synthesis Compiler. https://www.intel.
com/content/www/us/en/software/programmable/quartus-prime/hls-
compiler.html

[11] Liancheng Jia, Zizhang Luo, Liqiang Lu, and Yun Liang. 2021. Tensorlib: A spatial
accelerator generation framework for tensor algebra. In 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 865–870.

[12] Liancheng Jia, Yuyue Wang, Jingwen Leng, and Yun Liang. 2022. EMS: efficient
memory subsystem synthesis for spatial accelerators. In Proceedings of the 59th
ACM/IEEE Design Automation Conference. 67–72.

[13] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically sched-
uled high-level synthesis. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 127–136.

[14] Sakari Lahti, Panu Sjövall, Jarno Vanne, and Timo D Hämäläinen. 2018. Are we
there yet? A study on the state of high-level synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38, 5 (2018), 898–911.

[15] Yuchao Liao, Tosiron Adegbija, and Roman Lysecky. 2024. Are LLMs Any Good
for High-Level Synthesis? arXiv preprint arXiv:2408.10428 (2024).

[16] Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. 2023. Ver-
ilogeval: Evaluating large language models for verilog code generation. In 2023
IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE,
1–8.

[17] Mingjie Liu, Yun-Da Tsai, Wenfei Zhou, and Haoxing Ren. 2024. CraftRTL:
High-quality Synthetic Data Generation for Verilog Code Models with Correct-
by-Construction Non-Textual Representations and Targeted Code Repair. arXiv

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

An Empirical Comparision of LLM-based Hardware Design and High-level Synthesis Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

preprint arXiv:2409.12993 (2024).
[18] Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie.

2023. Rtlcoder: Outperforming gpt-3.5 in design rtl generation with our open-
source dataset and lightweight solution. arXiv preprint arXiv:2312.08617 (2023).

[19] OpenAI. 2024. chatgpt-4o. https://openai.com/index/hello-gpt-4o/
[20] Benjamin Carrion Schafer and Zi Wang. 2019. High-level synthesis design space

exploration: Past, present, and future. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 10 (2019), 2628–2639.

[21] Sneha Swaroopa, Rijoy Mukherjee, Anushka Debnath, and Rajat Subhra
Chakraborty. 2024. Evaluating Large Language Models for Automatic Reg-
ister Transfer Logic Generation via High-Level Synthesis. arXiv preprint
arXiv:2408.02793 (2024).

[22] ShuoWang, Yun Liang, andWei Zhang. 2017. FlexCL: An analytical performance
model for OpenCLworkloads on flexible FPGAs. In Proceedings of the 54th Annual
Design Automation Conference 2017. 1–6.

[23] Stephen Williams and Michael Baxter. 2002. Icarus verilog: open-source verilog
more than a year later. Linux Journal 2002, 99 (2002), 3.

[24] Youwei Xiao, Zizhang Luo, Kexing Zhou, and Yun Liang. 2024. Cement: Stream-
lining FPGA Hardware Design with Cycle-Deterministic eHDL and Synthesis.
In Proceedings of the 2024 ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays. 211–222.

[25] AMD Xilinx. 2023. Vitis High-Level Synthesis User Guide (UG1399). https:
//docs.xilinx.com/r/en-US/ug1399-vitis-hls

[26] Chenwei Xiong, Cheng Liu, Huawei Li, and Xiaowei Li. 2024. HLSPilot: LLM-
based High-Level Synthesis. arXiv preprint arXiv:2408.06810 (2024).

[27] Ruifan Xu, Youwei Xiao, Jin Luo, and Yun Liang. 2022. HECTOR: A multi-
level intermediate representation for hardware synthesis methodologies. In
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
Design. 1–9.

[28] Xinyi Zhang, Yawen Wu, Peipei Zhou, Xulong Tang, and Jingtong Hu. 2021.
Algorithm-hardware co-design of attention mechanism on FPGA devices. ACM
Transactions on Embedded Computing Systems (TECS) 20, 5s (2021), 1–24.

11

https://openai.com/index/hello-gpt-4o/
https://docs. xilinx. com/r/en-US/ug1399-vitis-hls
https://docs. xilinx. com/r/en-US/ug1399-vitis-hls

