
HECTOR: A Multi-level Intermediate Representation for
Hardware Synthesis Methodologies

Ruifan Xu1, Youwei Xiao1, Jin Luo1, Yun Liang1,2

1Peking University
2Beijing Advanced Innovation Center for Integrated Circuits

{xuruifan,shallwe,luo-jin,ericlyun}@pku.edu.cn

ABSTRACT
Hardware synthesis requires a complicated process to generate syn-

thesizable register transfer level (RTL) code. High-level synthe-

sis tools can automatically transform a high-level description into

hardware design, while hardware generators adopt domain specific

languages and synthesis flows for specific applications. The imple-

mentation of these tools generally requires substantial engineering

efforts due to RTL’s weak expressivity and low level of abstrac-

tion. Furthermore, different synthesis tools adopt different levels

of intermediate representations (IR) and transformations. A unified

IR obviously is a good way to lower the engineering cost and get

competitive hardware design rapidly by exploring different synthesis

methodologies.

In this paper, we propose Hector, a two-level IR providing a

unified intermediate representation for hardware synthesis method-

ologies. The high-level IR binds computation with a control graph

annotated with timing information, while the low-level IR provides

a concise way to describe hardware modules and elastic interconnec-

tions among them. Implemented based on the multi-level compiler

infrastructure (MLIR), Hector’s IRs can be converted to synthesiz-

able RTL designs. To demonstrate the expressivity and versatility,

we implement three synthesis approaches based on Hector: a high-

level synthesis (HLS) tool, a systolic array generator, and a hardware

accelerator. The hardware generated by Hector’s HLS approach is

comparable to that generated by the state-of-the-art HLS tools, and

the other two cases outperform HLS implementations in performance

and productivity.

CCS CONCEPTS
• Hardware → Hardware description languages and compilation.

KEYWORDS
Intermediate Representation, Hardware Synthesis

ACM Reference Format:
Ruifan Xu1, Youwei Xiao1, Jin Luo1, Yun Liang1,2. 2022. HECTOR: A

Multi-level Intermediate Representation for Hardware Synthesis Methodolo-

gies. In IEEE/ACM International Conference on Computer-Aided Design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9217-4/22/10. . . $15.00
https://doi.org/10.1145/3508352.3549370

(ICCAD ’22), October 30-November 3, 2022, San Diego, CA, USA. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3508352.3549370

1 INTRODUCTION
Power efficiency has become a critical design factor with the contin-

ual demands of emerging applications including machine learning

and scientific computation. As alternatives to general purpose CPUs

and GPUs , customized hardware accelerators [16, 29] like ASICs

and FPGAs provide good energy efficiency and performance. How-

ever, hardware design is still a big challenge. Hardware description

languages (HDLs) including Verilog [20] and VHDL [19] are fre-

quently used in industry for hardware design. These HDLs adopt a

low level of abstraction including wires, registers, and gates, also

known as register transfer level (RTL). However, HDLs’ productivity

is seriously hampered by this low level of abstraction, which makes

it difficult for hardware designers.

Both high-level synthesis (HLS) and hardware generators have

been proposed to improve the productivity of hardware design. HLS

is a general method for automatically generating hardware from a be-

havioral description written in high-level languages such as C, C++,

or OpenCL [24, 38, 40]. HLS offers a promising way to design hard-

ware in a high-level abstraction, which provides opportunities for

software engineers without hardware experience to design hardware

quickly. However, it can lead to bad performance and high resource

utilization due to the lack of domain knowledge about the compu-

tation and architecture [28]. On the other hand, hardware generator

makes use of domain knowledge to improve productivity. These gen-

erators often focus on a specific domain, such as streaming [14, 34]

and spatial accelerators [22, 23]. With the domain knowledge of

the target applications, these approaches use specific languages and

synthesis flows to generate hardware with good performance. Al-

though these approaches provide high level abstraction, they can

only support a specific class of applications.

Furthermore, different synthesis tools often adopt different synthe-

sis methodologies. HLS compilers convert the high-level description

to hardware implementation in three steps: allocation, scheduling,

and binding. The scheduling step, which determines the cycles for

each operation, can be implemented using different algorithms in-

cluding static, dynamic, and hybrid scheduling [4, 24]. Hardware

generators perform sophisticated architectural transformations to

improve performance and resource consumption. In addition to the

domain specific optimizations, hardware generators are often guided

with specific hardware templates to generate hardware implementa-

tion for different applications [14, 22].

Both synthesis flows require substantial engineering efforts due to

RTL’s weak expressivity and low level of abstraction. HLS tools take

high-level languages as inputs and use the compiler infrastructure.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508352.3549370&domain=pdf&date_stamp=2022-12-22

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Ruifan Xu1 , Youwei Xiao1 , Jin Luo1 , Yun Liang1,2

For example, Vitis HLS [42] adopts LLVM IR [26] as its internal rep-

resentation, which is a widely used software compilation IR. After

that, additional passes are needed to convert to hardware semantics.

As for hardware generators, domain specific languages (DSL) and

optimizations are often used for description and optimization. For ex-

ample, Tensorlib [22] selects tensor algebra as its representation, and

maps it into the hardware PE array using space time transformation.

However, these different methodologies share some similarities in

the intermediate representations, such as control logic and hardware

generation from a high-level abstraction. Therefore, it is possible to

have a unified IR for different synthesis approaches so that users can

easily design new hardware synthesis techniques based on the same

infrastructure and explore different methodologies.

In this paper, we propose Hector, a two-level IR providing a

unified description for different hardware synthesis methodologies

with expressivity and flexibility. The high-level IR (TOpological

Representation) binds computations with a control graph annotated

with timing information, while the low-level IR (Hierarchical Elastic

Componenent) provides a concise way to describe various hard-

ware components and elastic interconnections among them using

customizable primitives. Both IRs provide a uniform representation

of the control logic with various manners, but at different abstrac-

tion levels. The IRs in Hector are converted to synthesizable RTL

programs through a series of transformations including time graph

transformation, lowering pass, and RTL generation. The two-level

IR and all the transformations are built on the multi-level compiler

infrastructure (MLIR) [27].

The main contributions of this work are as follows:

• We propose Hector, a unified IR and synthesis framework sup-

porting multiple hardware synthesis methodologies including

high-level synthesis and hardware generator.

• We propose a two-level IR that is general enough for different

hardware synthesis methdologies.

• We implement a compiler that lowers the IRs to synthesizable

RTL through a series of analysis and optimizations.

To demonstrate the expressivity and versatility, we implement

three synthesis approaches based on Hector: a high-level synthesis

(HLS) tool, a systolic array generator, and an accelerator component

for sparse linear algebra. The experimental results show that the

hardware generated by Hector’s hybrid HLS scheduling improves

the performance by 29% on average compared to that generated by

the state-of-the-art HLS tool. The other two approaches outperform

HLS implementations in performance and productivity. Hector is
open source at GitHub (https://github.com/pku-liang/Hector).

2 BACKGROUND
2.1 High Level Synthesis
HLS offers a promising way to design hardware at a high-level

abstraction such as C-like language, which can release users from

designing at register transfer level. HLS compilers [2, 24, 38, 42]

then automatically convert the high-level language to HDLs by three

major processes: allocation, scheduling, and binding. Allocation

places all compute units on the datapath, and binding determines

where each operation executes.

Scheduling is the most important step in modern HLS tools. There

are two different scheduling methodologies: static and dynamic, as

Merge

Buff

Fork

Branch Sel

g(a,b) {
c=a+b;
d=c>>1;
e=a-d;
f=d-b;
g=e*f;
ret g;
}

a

b
1

d

c
a

e f

g

b

C0

C1

C2

RTL

start
i=0

done

int f()
{
for(i){}

}

Dynamic
Schedule

(a) static schedule (b) dynamic schedule

Compile

Static
Schedule

+++++
+++++

Allocate

Bind

FSM

+++++

Figure 1: Static and dynamic scheduling in high level synthesis.

shown in Figure 1. The most common flow of static approach con-

sists of 4 steps [9]: software compilation, static scheduling, allo-

cating & binding, and finite state machine (FSM) construction, as

shown in Figure 1(a). Compilation transforms the high-level program

into a software intermediate representation. Then, static scheduling

algorithm determines the execution time for operations considering

dependencies and resource constraints. For example, the add and

shift-right operations are placed in the first cycle (C0). Allocating

& binding algorithms explore the opportunity for resource sharing,

allocate necessary resources, and bind operations to them. Finally, a

finite state machine is constructed for RTL generation.

Static scheduling [3, 11, 17] is very effective for statically pre-

dictable programs such as perfect loops. Pipelining is a key optimiza-

tion technique to exploit parallelism among multiple loop iterations.

In sequential execution, one iteration can only begin after the pre-

vious iteration is finished. Pipelining allows iterations to overlap

which improves throughput and gain resource sharing. The distance

between two adjacent iterations is called initial interval (II) [18],

which is the indicator of throughput.

Dynamic scheduling generates a dataflow circuit by leveraging

elastic units [8], such as merge, branch, etc., as shown in Figure 1(b).

All data signals in dataflow circuits are accompanied by handshake

signals, which are valid and ready, in opposite directions, indicating

the availability of the next data from the source unit and the readi-

ness of the target unit to accept it, respectively. Static scheduling

makes conservative assumptions for unresolvable dependencies at

compile time. Dynamic scheduling overcomes this inefficiency by

postponing the scheduling decisions until run time, However, dy-

namic scheduling suffers from high resource consumption. Hybrid

scheduling combines static and dynamic schedulings [4, 5].

2.2 Intermediate Representation
Intermediate representation is an important abstraction to simplify

the design of compilation and synthesis flows. Compiler infrastruc-

tures like LLVM [26] and GCC apply machine-independent opti-

mizations and generate code for different target architectures based

on IRs. For example, Static single assignment (SSA) form [10] and

control dataflow graph (CDFG) representation are widely used in

compiler optimizations and static analysis. Many HLS tools [2, 24,

42, 43] adopt LLVM IR as their internal representation. However,

LLVM is a pure software IR that doesn’t contain any hardware in-

formation. [21, 30, 33, 37, 38] present hardware IRs that provide a

low-level abstraction to support hardware design.

MLIR [27] is a novel compiler infrastructure that provides pow-

erful scalability and modularity. MLIR greatly facilitates the imple-

mentation of various IRs and transformations among them. All IRs

in MLIR follow the SSA form and an explicit type system. Dialect in

HECTOR: A Multi-level Intermediate Representation for Hardware Synthesis Methodologies ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

(a) Topology (b) Node Type (c) Structure (d) Syntax (e) Operation

Normal node,
leads a sequential edge.
Call node,
leads a call edge.

If node,
leads two branches, each of which
flows into terminator through an empty
if edge.

Loop node,
leads a loop body, which returns to
source through back edge, and finally
delivers to terminator through an empty
loop edge.

D/S #cycles
sequential

D/S

if

if

D/S
sequential

back

D/S
call

@callee

[Results]=tor.op [Operands]
on (a to b)

[Results]=tor.call @callee
([Operands]) on (a to b)

[Results]=tor.if %cond
then { ... // tor.ops }
else { ... // tor.ops }
on (a to b)

[Results]=tor.for %i =
%lb to %ub step %s
{iter_args_list}

do { ... // tor.ops}
on (a to b)

tor.for %i = %c0 to %c10 step %c1 {
%m = tor.load %mask[%i] on (0 to 1)
%a = tor.if %m then {
%x = tor.addi %i %c1 on (1 to 2)
%y = tor.subi %i %c1 on (1 to 2)
%fx = tor.call @f(%x, %y) on (2 to 3)
tor.yield %fx

} else {
%ii = tor.muli %i %i on (1 to 4)
tor.yield %ii

} on (1 to 5)
tor.store %a to %A[%i] on (5 to 6)

} on (0 to 7)

tor.topo (0 to 7) {
tor.from 0 to 1 "seq:1"
tor.from 1 to 2 "seq:1"
tor.from 2 to 3 "call"
tor.from 1 to 4 "seq:2"
tor.from 3, 4 to 5 "if"
tor.from 5 to 6 "seq:1"
tor.from 0 to 7 "for"

}

0 1

2

4

3

5 6

7

1
1

2

@f
if

if 1

Figure 2: The design of ToR IR. ToR IR consists of topology and functional operations. In (a), topology describes the time graph with
supplementary information on edges, where all edges and nodes are set "static" as default. In (e), operations are bound on the graph
according to the syntax in (d). The binding situation determines the types of nodes on the time graph, as shown in (b). (c) shows the
restrictions the node types set on the graph structure.

MLIR is a hierarchical structure template, allowing basic optimiza-

tions in MLIR to be reused. This hierarchy supplies an expressive

representation, which makes it easy to implement a flexible IR.

3 INTERMEDIATE REPRESENTATION
In this section, we present the details of the IRs including ToR (TOpo-

logical Representation) and HEC (Hierarchical Elastic Component).

3.1 Overview
Hector contains a two-level IR system, where ToR is the high-level

IR and HEC IR is the low-level IR. ToR IR combines a software-like

control flow with the schedule information of each operation. HEC

IR proposes an allocate-assign mechanism to explicitly describe

the relationship between computation and compute units. Both IRs

provide a uniform representation of the control logic with various

scheduling manners such as static and dynamic. The main difference

between the two IRs is that ToR describes when the operation begins,

while HEC describes where it takes place.

Thanks to the expressiveness of the two-level representation, Hec-

tor supports versatile hardware synthesis methodologies. ToR is

capable of providing a high-level abstraction of the scheduling infor-

mation. Both dynamic and static scheduling in HLS can be captured

by ToR IR. The allocation of hardware resources and binding of

operations can then be described in HEC IR. The entire HLS proce-

dure can then be obtained from a series of lowering transformations

based on Hector IR. Hector can also be used to describe hardware at

the architectural level, which is necessary for hardware generators.

The allocate-assign method in HEC makes it easier to describe the

interconnection between different modules at the low level, while

high-level scheduling transformations can be applied to ToR IR.

3.2 ToR IR
The software IR such as LLVM IR lacks hardware semantics. The

idea of the high-level IR is to make it closer to hardware by providing

a directed graph that carries control flow and timing information

and binding software operations to elements of the graph. ToR is

composed of two parts, topology and functional operations.

Topology describes a time graph, which is a directed graph de-

scribing control flow and timing information. Topology includes a

tor.topo (x to y) operation, which indicates the source node

x and sink node y, respectively. The tor.from operations inside

tor.topo specify edges of the time graph. Attributes add supple-

mentary information such as latency and scheduling manners to

the time graph. There are four types of nodes in the time graph

including normal, call, if and loop. Normal node leads a sequential

edge, where "seq:2" indicates that the bounded operation takes two

cycles. Call node represents a function call, where "call" indicates

a state that stalls until the callee finishes. If a node leads two edges,

and loop node leads a loop body and loop back edge. The type of

each node on the time graph is determined by the operation binding.

The combination of these four node types is capable of describing

the schedule at high-level.

Three scheduling manners: static, pipeline, and dynamic, are

supported in ToR. Pipelining is a key optimization technique to im-

prove throughput. ToR supports pipelining by aligning branches of

all if operations and adding pipeline and II attributes to modules.

Topology also supports dynamic behavior that resolves conflicts at

run-time. Stalling occurs only when the conflict occurs, avoiding the

conservative assumption of static behaviors. This unified representa-

tion makes it easier to transform among different behaviors.

Functional operations present the algorithmic specification with

high-level control flow semantics (e.g., if, for, and while). It binds

each operation to some element of the time graph, either a node or

an edge. To be specific, general operations (computation, memory

access, function call) are bounded on edges, while if/loop operations

are bounded on nodes. Functional operations specify functionality

and binding according to the syntax in Figure 2(d). For example, the

tor.load operation in Figure 2(e) is bounded on edge (0 to 1),

which loads the address %i of memory %mask. The tor.for opera-

tion that iterates from %c0 to %c1 is bounded on node 0, and exits

the loop at the edge (0 to 7).

Figure 2 illustrates an example of ToR IR. The time graph in (a)

contains a loop, which is composed of two branches 1 → 2 → 3 and

1 → 4. There is also a function call on the edge 2 → 3, and the loop

exits at the edge 0→ 7. Figure 2(b)(c) present the four types of nodes

in the graph structure. Figure 2(e) shows the functional operations

which are bounded on the time graph. For example, the tor.for

operation is bounded on node 0, and the tor.muli is bounded on

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Ruifan Xu1 , Youwei Xiao1 , Jin Luo1 , Yun Liang1,2

%m.lhs, %m.rhs, %m.res=
hec.primitive "m" is "muli"
:i32, i32, i32

%i=hec.wire "i" :i32

%0=add %cst1 %i
hec.assign %m.lhs=%0
hec.assign %m.rhs=%i

hec.assign %i=%m.res

component @STG {
// allocations
stateset {
state @s0 {
// assigns
transition {
goto @s1 if%c
goto @s2 //else
}
} //other states
}
}{"stg"}

@s0

@s1 @s2
%c else

component @Pipe {
// allocations
stageset {
stage @s0 {
// assigns

} // other stages
stage @sN {
// assigns
deliver %x to %y
}
}
}{"pipeline",II=1}Parallel

Ops 0 1 2 3
a=i*i s+=a

a=i*i s+=a

component @Hs {
// instances
%f.a,r =
instance.@f

// elastic units
%m.i1,i2,o =
primitive."merge"
graph {
assign %m.i1=%f.r
assign %x=%m.o
}
}{"handshake"}

Merge

(a) allocation (b) assign

(c) STG (d) Pipeline (e) Handshake

Figure 3: Allocate-assign mechanism and three styles of com-
ponents in HEC. (a) shows an example for unit allocation, where
hec.primitive allocates a "muli" unit named "m" with three
ports, and hec.wire declares a wire, which is commonly used
in HDLs. (b) shows the usage of combinational operations and
hec.assign for signal delivery among ports and wires. (c)-(e)
presents three component styles.

edge (1 to 2). As shown in Figure 4(a), there can be multiple

manners in the same time graph, which are attached to the time

graph as attributes like "seq:2" and "dynamic".

3.3 HEC IR
Here, we propose HEC IR, which describes hardware with differ-

ent manners in a unified allocate-assign mechanism depicted in

Figure 3(a)(b). Allocation explicitly defines all function units and

sub-modules on the datapath, and the signals of these units are

determined through assignments. The allocate-assign mechanism

omits the insertion of the multiplexer, simplifying the assignment of

signals.

Compared with ToR, HEC works at a level much closer to hard-

ware. It explicitly describes the resource usage (including registers,

memory, and compute units). Corresponding to the different behav-

iors in ToR: static, pipeline and dynamic, a HEC design is composed

of three types of components matching their manners as follows.

STG-style component. HEC describes a static module in a state

transition graph (STG) style. The hec.stateset operation defines

a set of states, as shown in Figure 3(c). Inside each state @sx,

hec.assign operations specify the signal delivery among the allo-

cated resources. Such representation naturally supports fine-grained

parallelism. There is also a tor.transition operation in every

state, specifying which state the control is transferred to, either un-

conditionally or based on guard signals. Based on the allocate-assign

mechanism, it is convenient to describe resource sharing in an STG-

style component by simply feeding signals into the shared resources

(either registers or compute units) inside different states.

Pipeline-style component. The component for a pipelined mod-

ule is described in a multi-stage style. HEC explicitly presents all

pipeline stages by hec.stage operations inside the hec.stageset

operation, as shown in Figure 3(d). For each value, HEC allocates a

register to carry it for each stage between its definition and the latest

use. This is because there may be time overlap between the lifetimes

of the same value in consecutive executions. Signal delivery de-

scription is similar to that of STG-style components, while resource

sharing additionally needs to consider the initial interval (II) for

conflict avoidance [12, 44]. We also define operation hec.deliver

to specify inter-iteration data delivery.

Handshake-style component. HEC describes the dynamic sub-

module in handshake style [8]. In order to simplify the description,

extra signals in the handshake protocol, such as valid and ready, are

hidden in this kind of component. With elastic units, such as branch

and fork, predefined as primitives in HEC, it is easy to describe

the interconnections among components with the allocate-assign

mechanism inside the hec.graph operation, as shown in Figure 3(e).

3.4 IR Implementation
Hector is built on a novel compiler infrastructure, MLIR [27], that

provides powerful scalability and modularity. Both IRs are imple-

mented as dialects in MLIR infrastructure. MLIR provides a generic

form of operations, which can be customized for new languages.

Besides basic operands and results, operations may have attributes
and regions. Figure 2(d) shows the functional syntax of operations

in ToR. There are two regions in tor.if representing two branches

separately. The nested region is naturally supported in MLIR, which

enables the definition of stateset and stageset in Figure 3(c)(d).

The different behaviors of schedule, the binding of operations and

the instantiation of sub-module are all implemented as attributes
including literal and symbolic references.

The two-level representation makes it easy to implement differ-

ent synthesis methods. ToR IR provides a high-level abstraction of

schedule information, and different scheduling approaches can be

easily implemented by transformation on the time graph. The explicit

representation of allocation in HEC IR brings the opportunity for re-

source sharing, which significantly reduces resource consumption.

The allocation of sub-modules forms a hierarchical representation

of hardware, which is capable of describing the architectural design.

The allocate-assign mechanism also simplifies the definition of in-

terconnection between different modules. Therefore, both HLS and

hardware generators can be easily implemented in Hector IR.

4 COMPILING IRS TO HARDWARE
To compile IR to hardware, Hector involves the following passes,

1) Time Graph Transformation (4.1), which converts the time graph

in ToR into subgraphs by outlining graph connection, 2) Lowering

from ToR to HEC (4.2), which produces HEC programs with the same

functionality of ToR through pipeline partition, control logic genera-

tion, and resource sharing, 3) RTL Generation (4.3), which generates

Chisel programs by implementing hardware controller and inserting

necessary signals. Figure 4 illustrates the main steps from HEC to

RTL implementation written in Chisel.

4.1 Time Graph Transformation
ToR’s semantics allows for the existence of multiple scheduling

manners in the same time graph. However, because different types

HECTOR: A Multi-level Intermediate Representation for Hardware Synthesis Methodologies ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

(a) Original program (b) Hybrid Time Graph Transformation (c) Lowering ToR to HEC (d) RTL generation

tor.module @hybrid(%a, %b) {
tor.topo (0 to 4) {
tor.from 0 to 1 "dynamic"
tor.from 1 to 2 "seq:1"
tor.from 2 to 3 "seq:2"
tor.from 3 to 4 "dynamic"

}
%c = tor.addf %a, %b on (0 to 1)
%d = tor.subf %a, %b on (0 to 1)
%e = tor.addf %c, %c on (1 to 2)
%f = tor.mulf %d, %e on (2 to 3)
%g = tor.subf %f, 0.5 on (3 to 4)
return %g

}

tor.module @dynamic(%a, %b) {
tor.topo (0 to 4) {
tor.from 0 to 1 "dynamic"
tor.from 1 to 3 "call"
tor.from 3 to 4 "dynamic"

}
%c = tor.addf %a, %b on (0 to 1)
%d = tor.subf %a, %b on (0 to 1)
%f = tor.call @pipeline(%c, %d)

on (1 to 3)
%g = tor.subf %f, 0.5 on (3 to 4)
return %g

} {"dynamic"}

hec.component @dynamic(%a, %b, %g) {
submodule.c,d,f =
instance @pipeline

//elastic units allocation
f0.in,out0,out1 = primitive “fork”
graph {
assign %f0.in=%a
assign %addf.op0=%f0.out0
assign %subf0.op0=%f0.out1
assign %g=%subf1.result
//other assignments

}
} {"handshake"}

class dynamic extends MultiIOModule {
//IO definition
val a = IO(DecoupledIO(UInt(64.W))
val submodule = Module(new pipeline)

//allocation
val f0 = Module(new fork)

f0.in0 <> a
addf.op0 <> f0.out0
subf0.op0 <> f0.out1
g <> subf1.result

}

tor.module @pipeline(%c, %d) {
tor.topo (1 to 3) {
tor.from 1 to 2 "seq:1"
tor.from 2 to 3 "seq:2"

}
%e = tor.addf %c, %c on (1 to 2)
%f = tor.mulf %d, %e on (2 to 3)
return %f

} {"pipeline", II=1}

hec.component @pipeline(%c, %d, %f) {
stagetset {
stage @s0{

assign %addf.op0=%c
assign %addf.op1=%d
assign %reg0=%addf.result

}//other stages
stage @s2{deliver %reg2 to %f}

}
} {"pipeline", II=1}

class pipeline extends MultiIOModule {
val c=IO(Input(64.W))
//allocation
val reg0 = Reg(UInt(64.W))
addf.op0v := c
addf.op1 := d
reg0 := addf.result
//other stages
f: =reg2

}

0 1 2 3 41 2

0 1 3 4
call

1 2 31 2

Figure 4: An overall example for compiling Hector to hardware. The original module with hybrid manners is split into two modules with
dynamic and pipeline manners separately, and the connection between them is represented as a function call. Through resource and
register sharing, pure ToR modules are transformed to HEC components containing compute units and registers. RTL implementations
are generated by mapping ports and constructing controllers with the same functionality.

of hardware have different interfaces and cannot communicate di-

rectly with one another, this time graph is unsuitable for subsequent

transformations. This pass converts this time graph into multiple

sub-graphs where all edges and nodes have the same manner. The

connected sub-graph and related computation are defined as external

modules, and communication between the outer and inner modules

is accomplished through function calls.

In order to get inputs and outputs of the new function, we calculate

all live-in and live-out variables of the connected sub-graph. Live-in

variables are the arguments of the new function, and that function

returns the values of all live-out variables. As shown in Figure 4(a),

the connected sub-graph of time graph is marked by the red rectangle.

That time graph is split into two sub-graphs: a dynamic module and a

pipeline module described in Figure 4(b). The inner pipeline module

takes %c and %d as inputs, and returns the value of %f. This pass

ensures that only one type of hardware is considered in the following

transformations.

4.2 Lowering ToR to HEC
The time graph in static modules is converted to a low-level FSM

with the same functionality. For pipeline ToR modules, this pass

traverses the time graph and calculates the "distance" of each node

from the source node. The "distance" is indicated by “#cycle” at-

tribute of every time edge composing the path from the source node

to the current node. The time nodes with the same "distance" will

be placed in one stage. Each stage corresponds to a clock cycle, on

which the allocated time node starts the execution of the operations

whose start time is set as the current node.

In contrast to ToR, HEC specifies where the computation takes

place and where the intermediate value is stored. This opens up the

possibility of resource and register sharing, which allows disjoint

computations and values to share the same unit. ToR fits well in

such optimizations because of the high-level control flow and timing

information of computation contained in the time graph.

Resource and register sharing. Resource sharing can only hap-

pen between two operations that never occur at the same time, so

two disjoint operations mustn’t overlap in the time graph. We build

a conflict graph that shows all potential conflicts and uses a coloring

strategy to assign compute units to each node. As for register shar-

ing, we use a live range analysis on the time graph to calculate the

live range of each variable. The value of a variable in its live range

must be stored in a register unless it is used immediately. The main

difference between register sharing and resource sharing is that each

edge in the conflict graph represents an overlapping in live range.

As for hardware with dynamic behavior, each pair of operations

may happen at the same time, restricting resource sharing. As a

result, the lower pass just considers the generation of control logic.

The handshake protocol, which describes data transfer with valid and

ready signals, is used to implement the dynamic approach. This pro-

tocol is hidden in the HEC IR, which further simplifies the description.

Elastic components [8] are adopted to solve the synchronization of

tokens in the hardware with dynamic behavior. For example, branch

transfers the data to one of the outputs based on a condition, and

merge accepts one of the inputs which is similar to a φ function [10]

in software IR. We calculate the live-in and live-out variables of each

regions, and generate data transfer of variables among different re-

gion. After that, fork is inserted to synchronize multiple uses of the

same value, which is shown in Figure 4(c). Both addf and subf need

the value of %a, so a fork component is inserted for that variable.

The two outputs of fork are fed into addf and subf separately.

4.3 RTL Generation
HEC contains sufficient information to generate synthesizable RTL.

Each component in HEC has explicit I/O port definitions, assignments

of ports, a controller, and allocations of register and resource (in-

cluding memory, compute units, and other sub-component). The

RTL generation pass creates a Chisel [1] program by mapping each

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Ruifan Xu1 , Youwei Xiao1 , Jin Luo1 , Yun Liang1,2

component to a Chisel module with the same ports and assigning

the corresponding value to these ports. Chisel will automatically

insert the multiplexer, allowing for multiple assignments under dif-

ferent conditions. All of the built-in resources, such as memory and

compute units are implemented as a pre-defined Chisel Module.

Controller Generation. The STG-style component is controlled

by a state transition graph that contains a set of states and the tran-

sition between them, whereas the pipeline-style component is con-

trolled by a collection of stages and matching II. By inserting some

extra registers and wires, this pass builds a Chisel-style FSM for

these two types of components with the same functionality in ToR.

Due to the need to resolve conflicts at run-time, handshake-style

components do not have a centralized controller. For each port, the

handshake protocol is implemented as a Chisel class DecoupledIO

with ready, valid, and data signals. The Chisel program for a pipeline

component and a dynamic component is shown in Figure 4. The

controller of the pipeline component is eliminated because the II

equals one.

Wrapper construction. Due to the distinction between the handshake-

style component and the other two types of components, this pass

additionally generates a wrapper that attaches the handshake proto-

col to these components. Whether an STG-style (or pipeline-style)

component is valid and ready is determined by the component’s

completion (or the validity of the initial stage and final stage).

5 CASE STUDIES
We use Hector to build three synthesis approaches: an HLS tool, a

systolic array generator, and an accelerator component for sparse

linear algebra. These case studies are chosen to show how Hector

can be used to build various synthesis tools.

5.1 High-level Synthesis
Recently, [4, 5] demonstrates the effectiveness of hybrid scheduling.

Their design is based on LLMV IR. However, LLVM IR is mainly

a software compilation IR and lacks hardware semantics. There-

fore, one central question is what are the intermediate abstractions
suitable for both static and dynamic HLS scheduling?

In this case study, we build an HLS tool based on Hector to

demonstrate the generality of the proposed IR. MLIR provides sev-

eral built-in Dialects, such as Affine, SCF, and Standard [27]. SCF

Dialect describes static control flow in a higher-level abstraction

which is selected as the input of HLS. To build a complete HLS

flow, we additionally implement an SDC-based module schedul-

ing [44] that converts SCF Dialect to ToR. The scheduling result can

be easily represented by ToR because of the concise structure of the

time graph. Hybrid scheduling is also supported as a hybrid time

graph that contains multiple manners in the same graph. We design a

simple partition strategy on ToR that converts the manners of certain

edges from static to dynamic. This demonstrates that Hector can

flexibly support different HLS scheduling strategies.

Benchmarks. We evaluate using both regular and irregular ap-

plications. The regular kernels are selected from Machsuite[35]

including GEMM, Stencil2D, Stencil3D, and Spmv(CSR). These

four kernels do not have any branch, and thus are well suited for

static scheduling. The irregular kernels are AELoss Pull and AELoss

Push from the loss function of [32]. For these two kernels, a loop-

carried dependence resides inside the innermost loop. A considerable

amount of computation is guarded by an unpredictable condition,

which is seldom true.

Methodology. Polygeist[31] is used as Hector’s front-end to con-

vert C programs into SCF dialect in MLIR, then Hector generates an

RTL file in Verilog targeting FPGA part xc7z020clg484. We obtain

cycle numbers using RTL level simulation. Timing and resource

results are obtained from post synthesis report from Vivado 2021.1.

In the following, we first compare Hector with the state-of-the-

art HLS frameworks. Specifically, we compare static scheduling

in Hector with Vitis HLS [42] and dynamic scheduling with Dy-

namatic [24] 1. For Vitis HLS, we apply pipeline directives on the

inner-most loop. For comparison with Dynamatic, we convert the

floating-point operations for benchmarks AELoss Pull and AELoss

Push to their integer equivalence because the open-source Dyna-

matic with floating-point computation fails to run. Then, we evaluate

the effect of our hybrid scheduling in Hector by comparing it with

static and dynamic scheduling. In Hector, we can switch between

static, dynamic, and hybrid scheduling by easily configuring the

scheduling modes provided as an attribute of SCF functions.

Comparison with state-of-the-art HLS. Table 1 demonstrates

that Hector can achieve comparable performance with Vitis HLS

and Dynamatic for the tested kernels. The number of DSP in Vitis

HLS is different because we use a different IP configuration. For

Stencil2D and Stencil3D benchmarks, we attribute the large con-

sumption of resources to our resource binding algorithm compared

with Vitis HLS. Hector generates smaller hardware than Dynamatic

because of Chisel’s internal optimizations, such as width analysis.

For the AELossPush benchmark, the resource usage of Dynamatic

is substantially higher because LLVM IR, the input language of Dy-

namatic, has too many basic blocks, which have a negative impact

on Dynamatic’s basic blocks based scheduling algorithm.

Hybrid scheduling. For the AELossPull benchmark, the major

bottleneck is caused by the loop-carried dependence guarded by a

condition. The loop-carried dependence causes a conservative II in

static scheduling, while dynamic scheduling yields better throughput.

Our partition algorithm extracts out the operations except the ones

associated with the loop-carried dependence into a static submodule.

The submodule contains four floating-point multiplications and four

floating-point additions, which can be implemented by only two

multipliers and two adders in static scheduling. However, these oper-

ations can not share any resources in dynamic scheduling, leading

to massive DSP consumption. The hybrid scheduling can retain the

performance improvement of dynamic scheduling while reducing re-

source usage by enabling resource sharing inside static submodules.

Static (dynamic) scheduling is effective for pure regular (irregular)

applications, while hybrid scheduling is a promising solution for

complex applications with a mixture of regular and irregular behav-

iors. Overall, the hybrid scheduling improves the performance by

29% compared to static on average.

AELoss Push contains a two-level loop nest with conditions. The

comparison results between the three scheduling modes are similar

to AELoss Pull except for the higher FF usage in static and hybrid

scheduling. This is mainly because of our register allocation strat-

egy. The complicated loop nest and conditions exacerbate the buffer

1Dynamatic only provides one buffer insertion strategy based on a Mix ILP solver,
which is time-consuming and unscalable. Buffer insertion is disabled in both tools for a
fair comparison.

HECTOR: A Multi-level Intermediate Representation for Hardware Synthesis Methodologies ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

Table 1: Timing and Resource Comparison between Hector and Vitis HLS (Vitis), Dynamatic (DYN)

Benchmark Slices LUTs FFs DSPs Cycles Period (ns) Time (ms)

Vitis ours ratio Vitis ours ratio Vitis ours ratio Vitis ours ratio Vitis ours ratio Vitis ours ratio Vitis ours ratio

GEMM 486 441 0.846 852 890 1.045 1958 1600 0.817 14 13 0.929 3932.1k 3752.1k 0.954 5.073 4.14 0.816 19.948 15.533 0.779

Stencil2D 47 138 2.936 94 192 2.043 188 370 1.968 3 4 1.333 320.5k 312.9k 0.976 4.545 3.904 0.859 1.457 1.221 0.838

Stencil3D 204 245 1.201 454 372 0.817 668 890 1.332 6 8 1.333 102.5k 103.7k 1.011 5.692 4.672 0.821 0.583 0.484 0.30

SPMV (CSR) 502 438 0.873 881 932 1.058 1934 1625 0.840 14 13 0.929 37.1k 34.2k 0.920 5.299 4.848 0.915 0.197 0.165 0.842

Normalized mean 1.388 1.189 1.177 0.964 0.966 0.876 0.845
DYN ours ratio DYN ours ratio DYN ours ratio DYN ours ratio DYN ours ratio DYN ours ratio DYN ours ratio

AEloss Pull 115 99 0.860 331 280 0.846 265 212 0.800 - - - 12.5k 14.7k 1.175 6.1 5.569 0.913 0.076 0.082 1.073

AEloss Push 365 87 0.238 1118 250 0.224 900 199 0.221 - - - 326.1k 293.7k 0.901 6.2 5.5 0.887 2.022 1.616 0.799

Stencil2D 534 408 0.764 1626 1227 0.755 1379 891 0.646 - - - 429.8k 398.6k 0.928 7.277 6.590 0.906 3.128 2.627 0.840

Normalized mean 0.621 0.680 0.556 - 1.001 0.901 0.903

Table 2: Timing and Resource Comparison between Hector’s static scheduling (S), dynamic scheduling (D) and hybrid scheduling (H)

Benchmark Slices LUTs FFs DSPs Cycles Period (ns) Time (ms)

S D H S D H S D H S D H S D H S D H S D H

AELoss Pull 833 2001 1607 1844 5216 3447 3198 7193 7737 16 55 29 15.4k 9.7k 9.3k 5.378 5.683 5.765 0.083 0.055 0.054

AELoss Push 2539 2429 3058 4471 7593 7339 11123 8445 11543 6 15 12 1506.2k 970.9k 723.6k 6.004 6.058 6.14 9.043 5.882 4.443

Stencil2D 138 442 138 192 1219 192 370 924 370 4 4 4 312.9k 304.9k 312.9k 3.904 6.4 3.904 1.221 1.951 1.221

Normalized mean 1 2.139 1.378 1 3.625 1.503 1 1.835 1.486 1 2.313 1.6044 1 0.748 0.695 1 1.235 1.032 1 0.969 0.713

insertion algorithm’s effect, while the regular behavior mitigates this

situation in static scheduling. As a result, hybrid scheduling pre-

serves the irregular behavior and achieves a better throughput with

the help of static submodules. As for the Stencil2D benchmark, the

partitioning algorithm chooses the whole program as a static module

because the computation has no branches and is very regular. In

that case, dynamic scheduling can only get comparable performance

while consuming a large number of resources.

The comparison result against existing HLS tools demonstrates

that Hector can fit well in HLS no matter with static, dynamic,

or hybrid manners. [5] implements a hybrid scheduling strategy

by partitioning LLVM IR into multiple functions and synthesizing

them with separate HLS tools. In contrast, Hector allows users

to customize HLS algorithms (such as the partitioning algorithm)

implemented as MLIR passes, which facilitates easy extension and

allows more optimization opportunities.

5.2 Systolic Array Generator
Systolic array is a class of accelerators where inputs or results pass

through the processor elements (PEs) [7, 22, 23]. In this case study,

we use Hector to build a systolic array generator. This generator

can generate PE arrays of arbitrary size given a PE’s configuration,

which can be written in either ToR or HEC. In addition, SCF Dialect

is also supported by reusing the previous HLS process (5.1).

Implementation. We use an elastic implementation that allows

each PE to stall if the data does not arrive or the subsequent PE

is not ready to receive new data. Supporting dynamic behavior is

critical, particularly when bandwidth is limited. When sufficient

bandwidth is ensured, an elastic systolic array performs similarly

to the static systolic array with the exception of a few more signals.

This dynamic behavior is implemented as an elastic interconnection

between the PE array. Figure 5 shows a 2×2 systolic array repre-

sented in HEC. The outer module is a dynamic style component that

enables the implementation to be elastic. All PEs are instantiated

component @PE(%Ain, %Bin, %Aout, %Bout) {}
component @Systolic_Array(...) {

//Instantiate PE Array
%pe_00.Ain, Bin, Aout, Bout = instance @PE
%pe_01.Ain, Bin, Aout, Bout = instance @PE
%pe_10.Ain, Bin, Aout, Bout = instance @PE
%pe_11.Ain, Bin, Aout, Bout = instance @PE
graph {

assign %pe_01.Ain = %pe_00.Aout
assign %pe_10.Bin = %pe_00.Bout
assign %pe_11.Ain = %pe_10.Aout
assign %pe_11.Bin = %pe_01.Bout

}
}

Figure 5: A 2×n by n×2 matrix multiplication systolic array
described in HEC. The interconnection between PEs is described
as hec.assign.

from the corresponding component, and data movement between

PEs is explicitly stated as hec.assign.

A single PE can be configured at multiple levels. For the PE with

simple behavior, SCF Dialect can be automatically lowered using the

approach described in subsection 5.1. HEC can be used in applications

with no resource limitations, and ToR is capable of handling complex

designs. This once again demonstrates the advantages of multi-level

IR. Pipelined PE can be easily expressed at these levels due to the

explicit pipeline in both levels.

Comparison against Calyx. Calyx [33] also provides a static

systolic array generator for demonstration purposes, but it lacks

the expressivity required for hardware generation. More than 3000

lines of code are required to describe an 8×8 systolic array. The

fundamental reason is that the control logic is described in a flattened

representation that explicitly represents all data moves at each cycle.

Another issue in Calyx is that it lacks a pipeline primitive, prohibiting

all PEs in generated hardware from being pipelined. In real-world

applications, interleaving multiple calculations is commonly used to

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Ruifan Xu1 , Youwei Xiao1 , Jin Luo1 , Yun Liang1,2

0

300

600

900

1200

4 x 4 8 x 8 16 x 16 32 x 32

Cy
cl

e
co

un
t

Input size

Vitis HLS
Calyx
Tensorlib
Hector

Figure 6: Cycle count comparison between different implemen-
tations of matrix multiplication.

Table 3: The comparison between Vitis HLS and Hector.

Line of Codes Initial Interval

Hector (RTL) 35 1

Vitis HLS 111 1

improve resource utilization ratio, but the lack of pipeline primitives

makes this optimization impossible.

Evaluation. We evaluate matrix-multiplication kernels ranging

from 4×4 to 32×32. The PE configuration of the systolic array is

written in SCF, which is automatically lowered to HEC. Aside from the

systolic arrays generated by Hector and Calyx, we implement a basic

program in Vitis HLS that uses pipeline pragma in the inner-most

loop. We optimize the HLS implementation by unrolling the outer

two loops and partitioning all the matrices in the proper dimension

to make a fair comparison. We also compare it with Tensorlib [22], a

state-of-the-art systolic array generator. The experiment targets Zynq

UltraScale+ XCZU3EG FPGA at a 7ns clock period, which is the

same as Calyx’s setup. We compare the cycle counts of the designs

(Figure 6). Hector supports pipeline PE, which further optimizes

the performance by interleaving multiple computations. On average,

the systolic array generated by Hector improves the performance by

5.6× improvement compared to optimized HLS implementation. In

comparison to the HLS implementation, Calyx implementation with

sequential PEs can only achieve 79% performance, demonstrating

the importance of pipeline semantics. Hector can achieve the same

performance with Tensorlib thanks to the structural description and

pipeline support.

The experiment results demonstrate Hector’s versatility in apply-

ing domain-specific approaches, which is difficult to express in HLS

tools. With architectural information, Hector can outperform the

general-purpose HLS tool. The multi-level paradigm also provides

the capability to design hardware at various levels.

5.3 Shuffle Unit
Shuffle unit is the key hardware component that solves bank conflicts

between multiple PEs, which has been used in sparse matrix-vector

multiplication (SPMV) design [13]. Each pair of streams may access

an arbitrary bank determined by the column index, resulting in traffic

conflict. However, it is challenging to implement the shuffle unit

with optimized throughput in HLS tools [13]. In static scheduling,

the conservative assumption of traffic pattern results in a big II, and

dynamic scheduling is not suited to generate efficient control logic.

Therefore, it’s better to implement the shuffle unit at the RTL. In

Hector, the combination of RTL and other synthesis approaches is

simple. RTL design can be easily integrated with other synthesis

approaches using the Chisel programs and dummy representations.

We use Hector to construct an RTL design and simplify a pipeline

kernel [13] written in Vitis HLS. The RTL implementation takes

only 35 lines to implement the control logic, while the optimal HLS

implementation uses 111 lines. As previously stated, the conservative

assumption in HLS results in a large II. Due to explicit control logic

in HLS implementation, it gets the optimal II which matches the

RTL implementation. The experiment demonstrates that HLS is

not suitable for control logic. Therefore, combining HLS and RTL

design is a superior option for achieving good performance while

maintaining enough productivity.

6 RELATED WORKS
Domain-specific languages. DSLs provide a higher level of ab-

straction that is natural to the domain, assisting in the generation of

hardware with expert knowledge. Raghu Prabhakar et al. [34] adopt

parallel patterns like map and fold to express high-level computation.

Aetherling [14] aims at generating streaming accelerators by apply-

ing transformations to the proposed data-parallel IR. Nithin George

et al. [15] generate hardware systems from applications written in a

machine-learning DSL. HeteroCL [25] provides an abstraction that

decouples algorithm description and architecture specification, and

develops a compilation flow to heterogeneous computing platforms.

Apart from domain-specific optimizations, extra compilation to the

RTL program is required, which makes it difficult for researchers to

generate hardware quickly.

IR for hardware. FIRRTL [21] that obeys AST format is the in-

termediate representation in Chisel. LLHD [37] is a three-level IR

that aims at different applications including simulation, verification,

and logic synthesis. μIR [38] uses dynamic scheduling based on

task-level parallelism and briefly presents a task-level representation.

Wu et al. and synASM [39, 41] propose a CDFG representation for

hardware and software. AHIR [36] proposes a low-level abstraction

that decouples the datapath and control path. Calyx[33] provides

software-like control flow primitives such as seq, par, and while to

describe hardware. The goal of CIRCT [6] is to construct a reusable

and modular infrastructure for the entire hardware generation includ-

ing high-level synthesis and logic synthesis. This project is still in

progress and absorbs existing IR designs like Calyx and LLHD.

7 CONCLUSION
In this paper, we propose Hector, a two-level IR providing a unified

description for different synthesis methodologies. Through a series

of transformations and optimizations based on the MLIR infras-

tructure, Hector’s IRs are finally converted to synthesizable RTL

programs. We demonstrate the expressivity and effectiveness of our

design by implementing three synthesis approaches. The experiment

results show that Hector can generate comparable hardware designs

with existing HLS tools in terms of performance and resource utiliza-

tion. With the combination of different methodologies, it’s simple

for Hector to outperform HLS tools. Moreover, the open-source

framework provides flexibility to customize synthesis approaches

and allows users to explore advanced techniques.

8 ACKNOWLEDGMENTS
This work is supported in part by National Natural Science Founda-

tion of China (NSFC) under grant No.62090021.

HECTOR: A Multi-level Intermediate Representation for Hardware Synthesis Methodologies ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

REFERENCES
[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-

mas Avizienis, John Wawrzynek, and Krste Asanovic. 2012. Chisel: Constructing
hardware in a Scala embedded language. In DAC Design Automation Conference
2012.

[2] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: High-
Level Synthesis for FPGA-Based Processor/Accelerator Systems. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (Monterey, CA, USA) (FPGA ’11).

[3] Hongzheng Chen and Minghua Shen. 2019. A Deep-Reinforcement-Learning-
Based Scheduler for FPGA HLS. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD).

[4] Jianyi Cheng, Lana Josipovic, George A. Constantinides, Paolo Ienne, and John
Wickerson. 2020. Combining Dynamic & Static Scheduling in High-Level Syn-
thesis. In Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA ’20).

[5] Jianyi Cheng, John Wickerson, and George A. Constantinides. 2022. Finding and
Finessing Static Islands in Dynamically Scheduled Circuits. In Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Virtual Event, USA) (FPGA ’22).

[6] CIRCT Community. 2021. CIRCT: Circuit IR Compilers and Tools. Retrieved
March 7, 2021 from https://github.com/llvm/circt

[7] Jason Cong and Jie Wang. 2018. PolySA: Polyhedral-Based Systolic Array Auto-
Compilation. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD).

[8] J. Cortadella, M. Kishinevsky, and B. Grundmann. 2006. Synthesis of synchronous
elastic architectures. In 2006 43rd ACM/IEEE Design Automation Conference.

[9] Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andres Takach. 2009.
An Introduction to High-Level Synthesis. IEEE Design Test of Computers 26, 4
(2009).

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. 1991. Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (Oct. 1991).

[11] Steve Dai and Zhiru Zhang. 2019. Improving Scalability of Exact Modulo Schedul-
ing with Specialized Conflict-Driven Learning. In Proceedings of the 56th Annual
Design Automation Conference 2019 (Las Vegas, NV, USA) (DAC ’19).

[12] Steve Dai and Zhiru Zhang. 2019. Improving Scalability of Exact Modulo Sched-
uling with Specialized Conflict-Driven Learning. In 2019 56th ACM/IEEE Design
Automation Conference (DAC).

[13] Yixiao Du, Yuwei Hu, Zhongchun Zhou, and Zhiru Zhang. 2022. High-
Performance Sparse Linear Algebra on HBM-Equipped FPGAs Using HLS: A
Case Study on SpMV. In Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA
’22).

[14] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Hanrahan.
2020. Type-Directed Scheduling of Streaming Accelerators. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020).

[15] Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J. Brown,
Arvind K. Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo Ienne. 2014.
Hardware system synthesis from Domain-Specific Languages. In 2014 24th Inter-
national Conference on Field Programmable Logic and Applications (FPL).

[16] Kartik Hegde and et al. 2019. ExTensor: An Accelerator for Sparse Tensor
Algebra. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (Columbus, OH, USA) (MICRO ’52).

[17] Hsuan Hsiao and Jason Anderson. 2019. Thread Weaving: Static Resource Sched-
uling for Multithreaded High-Level Synthesis. In 2019 56th ACM/IEEE Design
Automation Conference (DAC).

[18] Yu-Chin Hsu and Yuang-Long Jeang. 1993. Pipeline scheduling techniques in
high-level synthesis. In Sixth Annual IEEE International ASIC Conference and
Exhibit.

[19] IEEE. 1076-2008. VHDL Language Reference Manual.
[20] IEEE. 1364-2005. Standard for Verilog Hardware Description Language.
[21] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Mag-

yar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. 2017. Reusability is FIRRTL Ground: Hardware Construction Lan-
guages, Compiler Frameworks, and Transformations. In Proceedings of the 36th
International Conference on Computer-Aided Design (Irvine, California) (ICCAD
’17).

[22] Liancheng Jia, Zizhang Luo, Liqiang Lu, and Yun Liang. 2021. TensorLib: A
Spatial Accelerator Generation Framework for Tensor Algebra. In 2021 58th
ACM/IEEE Design Automation Conference (DAC).

[23] Liancheng Jia, Yuyue Wang, Jingwen Leng, and Yun Liang. 2022. EMS: Efficient
Memory Subsystem Synthesis for Spatial Accelerators. In 2022 59th ACM/IEEE
Design Automation Conference (DAC).

[24] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically Scheduled
High-Level Synthesis. In Proceedings of the 2018 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (Monterey, CALIFORNIA, USA)
(FPGA ’18).

[25] Yi-Hsiang Lai and et al. 2019. HeteroCL: A Multi-Paradigm Programming
Infrastructure for Software-Defined Reconfigurable Computing. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (Seaside, CA, USA) (FPGA ’19).

[26] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004.

[27] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO).

[28] Yun Liang, Kyle Rupnow, Yinan Li, Dongbo Min, Minh N. Do, and Deming Chen.
2012. High-Level Synthesis: Productivity, Performance, and Software Constraints.
JECE 2012, Article 1 (jan 2012), 1 pages. https://doi.org/10.1155/2012/649057

[29] Xinheng Liu, Yao Chen, Tan Nguyen, Swathi Gurumani, Kyle Rupnow, and
Deming Chen. 2016. High Level Synthesis of Complex Applications: An H.264
Video Decoder. In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA ’16).

[30] Liqiang Lu, Naiqing Guan, Yuyue Wang, Liancheng Jia, Zizhang Luo, Jieming
Yin, Jason Cong, and Yun Liang. 2021. TENET: A Framework for Modeling
Tensor Dataflow Based on Relation-Centric Notation. In Proceedings of the 48th
Annual International Symposium on Computer Architecture (Virtual Event, Spain)
(ISCA ’21). IEEE Press. https://doi.org/10.1109/ISCA52012.2021.00062

[31] William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. 2021.
Polygeist: Raising C to Polyhedral MLIR. In 2021 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT).

[32] Alejandro Newell, Zhiao Huang, and Jia Deng. 2017. Associative Embedding:
End-to-End Learning for Joint Detection and Grouping. In Proceedings of the
31st International Conference on Neural Information Processing Systems (Long
Beach, California, USA) (NIPS’17).

[33] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A Com-
piler Infrastructure for Accelerator Generators. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (Virtual, USA) (ASPLOS 2021).

[34] Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee, Christo-
pher De Sa, Christos Kozyrakis, and Kunle Olukotun. 2016. Generating Config-
urable Hardware from Parallel Patterns. SIGPLAN Not. 51, 4 (mar 2016).

[35] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. MachSuite: Benchmarks for accelerator design and customized ar-
chitectures. In 2014 IEEE International Symposium on Workload Characterization
(IISWC).

[36] Sameer D. Sahasrabuddhe, Hakim Raja, Kavi Arya, and Madhav P. Desai. 2007.
AHIR: A Hardware Intermediate Representation for Hardware Generation from
High-level Programs. In 20th International Conference on VLSI Design held
jointly with 6th International Conference on Embedded Systems (VLSID’07).

[37] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020. LLHD: A
Multi-Level Intermediate Representation for Hardware Description Languages. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020).

[38] Amirali Sharifian and et al. 2019. μIR -An Intermediate Representation for
Transforming and Optimizing the Microarchitecture of Application Accelera-
tors. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (Columbus, OH, USA) (MICRO ’52).

[39] Rohit Sinha and Hiren D. Patel. 2012. synASM: A High-Level Synthesis Frame-
work With Support for Parallel and Timed Constructs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 31, 10 (2012).

[40] Shuo Wang, Yun Liang, and Wei Zhang. 2017. FlexCL: An analytical performance
model for OpenCL workloads on flexible FPGAs. In 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC).

[41] Qiang Wu and et al. 2002. A hierarchical CDFG as intermediate representa-
tion for hardware/software codesign. In IEEE 2002 International Conference on
Communications, Circuits and Systems and West Sino Expositions, Vol. 2.

[42] Xilinx. 2021. Vitis High-Level Synthesis. Retrieved March 7, 2021 from https:
//www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

[43] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. 2022. ScaleHLS: A New Scalable High-Level
Synthesis Framework on Multi-Level Intermediate Representation. In 2022 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).

[44] Zhiru Zhang and Bin Liu. 2013. SDC-Based modulo Scheduling for Pipeline
Synthesis. In Proceedings of the International Conference on Computer-Aided
Design (San Jose, California) (ICCAD ’13).

