HECTOR: A Multi-level Intermediate Representation for
Hardware Synthesis Methodologies

Ruifan Xu', Youwei Xiao!, Jin Luo!, Yun LiamgL2
IPeking University
?Beijing Advanced Innovation Center for Integrated Circuits
{xuruifan,shallwe,luo-jin,ericlyun} @pku.edu.cn

ABSTRACT

Hardware synthesis requires a complicated process to generate syn-
thesizable register transfer level (RTL) code. High-level synthe-
sis tools can automatically transform a high-level description into
hardware design, while hardware generators adopt domain specific
languages and synthesis flows for specific applications. The imple-
mentation of these tools generally requires substantial engineering
efforts due to RTL’s weak expressivity and low level of abstrac-
tion. Furthermore, different synthesis tools adopt different levels
of intermediate representations (IR) and transformations. A unified
IR obviously is a good way to lower the engineering cost and get
competitive hardware design rapidly by exploring different synthesis
methodologies.

In this paper, we propose Hector, a two-level IR providing a
unified intermediate representation for hardware synthesis method-
ologies. The high-level IR binds computation with a control graph
annotated with timing information, while the low-level IR provides
a concise way to describe hardware modules and elastic interconnec-
tions among them. Implemented based on the multi-level compiler
infrastructure (MLIR), Hector’s IRs can be converted to synthesiz-
able RTL designs. To demonstrate the expressivity and versatility,
we implement three synthesis approaches based on Hector: a high-
level synthesis (HLS) tool, a systolic array generator, and a hardware
accelerator. The hardware generated by Hector’s HLS approach is
comparable to that generated by the state-of-the-art HLS tools, and
the other two cases outperform HLS implementations in performance
and productivity.

CCS CONCEPTS

* Hardware — Hardware description languages and compilation.

KEYWORDS

Intermediate Representation, Hardware Synthesis

ACM Reference Format:

Ruifan Xul, Youwei Xiao!, Jin Luo!, Yun Liangl'z. 2022. HECTOR: A
Multi-level Intermediate Representation for Hardware Synthesis Methodolo-
gies. In IEEE/ACM International Conference on Computer-Aided Design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ICCAD °22, October 30-November 3, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9217-4/22/10. .. $15.00
https://doi.org/10.1145/3508352.3549370

(ICCAD °22), October 30-November 3, 2022, San Diego, CA, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3508352.3549370

1 INTRODUCTION

Power efficiency has become a critical design factor with the contin-
ual demands of emerging applications including machine learning
and scientific computation. As alternatives to general purpose CPUs
and GPUs , customized hardware accelerators [16, 29] like ASICs
and FPGAs provide good energy efficiency and performance. How-
ever, hardware design is still a big challenge. Hardware description
languages (HDLs) including Verilog [20] and VHDL [19] are fre-
quently used in industry for hardware design. These HDLs adopt a
low level of abstraction including wires, registers, and gates, also
known as register transfer level (RTL). However, HDLs’ productivity
is seriously hampered by this low level of abstraction, which makes
it difficult for hardware designers.

Both high-level synthesis (HLS) and hardware generators have
been proposed to improve the productivity of hardware design. HLS
is a general method for automatically generating hardware from a be-
havioral description written in high-level languages such as C, C++,
or OpenCL [24, 38, 40]. HLS offers a promising way to design hard-
ware in a high-level abstraction, which provides opportunities for
software engineers without hardware experience to design hardware
quickly. However, it can lead to bad performance and high resource
utilization due to the lack of domain knowledge about the compu-
tation and architecture [28]. On the other hand, hardware generator
makes use of domain knowledge to improve productivity. These gen-
erators often focus on a specific domain, such as streaming [14, 34]
and spatial accelerators [22, 23]. With the domain knowledge of
the target applications, these approaches use specific languages and
synthesis flows to generate hardware with good performance. Al-
though these approaches provide high level abstraction, they can
only support a specific class of applications.

Furthermore, different synthesis tools often adopt different synthe-
sis methodologies. HLS compilers convert the high-level description
to hardware implementation in three steps: allocation, scheduling,
and binding. The scheduling step, which determines the cycles for
each operation, can be implemented using different algorithms in-
cluding static, dynamic, and hybrid scheduling [4, 24]. Hardware
generators perform sophisticated architectural transformations to
improve performance and resource consumption. In addition to the
domain specific optimizations, hardware generators are often guided
with specific hardware templates to generate hardware implementa-
tion for different applications [14, 22].

Both synthesis flows require substantial engineering efforts due to
RTL’s weak expressivity and low level of abstraction. HLS tools take
high-level languages as inputs and use the compiler infrastructure.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508352.3549370&domain=pdf&date_stamp=2022-12-22

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

For example, Vitis HLS [42] adopts LLVM IR [26] as its internal rep-
resentation, which is a widely used software compilation IR. After
that, additional passes are needed to convert to hardware semantics.
As for hardware generators, domain specific languages (DSL) and
optimizations are often used for description and optimization. For ex-
ample, Tensorlib [22] selects tensor algebra as its representation, and
maps it into the hardware PE array using space time transformation.
However, these different methodologies share some similarities in
the intermediate representations, such as control logic and hardware
generation from a high-level abstraction. Therefore, it is possible to
have a unified IR for different synthesis approaches so that users can
easily design new hardware synthesis techniques based on the same
infrastructure and explore different methodologies.

In this paper, we propose Hector, a two-level IR providing a
unified description for different hardware synthesis methodologies
with expressivity and flexibility. The high-level IR (TOpological
Representation) binds computations with a control graph annotated
with timing information, while the low-level IR (Hierarchical Elastic
Componenent) provides a concise way to describe various hard-
ware components and elastic interconnections among them using
customizable primitives. Both IRs provide a uniform representation
of the control logic with various manners, but at different abstrac-
tion levels. The IRs in Hector are converted to synthesizable RTL
programs through a series of transformations including time graph
transformation, lowering pass, and RTL generation. The two-level
IR and all the transformations are built on the multi-level compiler
infrastructure (MLIR) [27].

The main contributions of this work are as follows:

e We propose Hector, a unified IR and synthesis framework sup-
porting multiple hardware synthesis methodologies including
high-level synthesis and hardware generator.

e We propose a two-level IR that is general enough for different
hardware synthesis methdologies.

e We implement a compiler that lowers the IRs to synthesizable
RTL through a series of analysis and optimizations.

To demonstrate the expressivity and versatility, we implement
three synthesis approaches based on Hector: a high-level synthesis
(HLS) tool, a systolic array generator, and an accelerator component
for sparse linear algebra. The experimental results show that the
hardware generated by Hector’s hybrid HLS scheduling improves
the performance by 29% on average compared to that generated by
the state-of-the-art HLS tool. The other two approaches outperform
HLS implementations in performance and productivity. Hector is
open source at GitHub (https:// github.com/pku-liang/Hector).

2 BACKGROUND
2.1 High Level Synthesis

HLS offers a promising way to design hardware at a high-level
abstraction such as C-like language, which can release users from
designing at register transfer level. HLS compilers [2, 24, 38, 42]
then automatically convert the high-level language to HDLs by three
major processes: allocation, scheduling, and binding. Allocation
places all compute units on the datapath, and binding determines
where each operation executes.

Scheduling is the most important step in modern HLS tools. There
are two different scheduling methodologies: static and dynamic, as

Ruifan Xu', Youwei Xiaol,Jin Luol, Yun Liang]'2

a b start
g(a,b) { ; Bt O
c=a+b; ’1 Merge
d=c>>1; Compile €0 ClE) | Allocate o for(i){}
e=a-d; T S el e = /| }

d Bind
f=d-b; Static ¢1 b' b ey
g=e*f; Schedule i ESM

ret g; = c2 gg = &=

(b) dynamic schedule

@ Dynamic

Schedule

Sel
(a) static schedule
Figure 1: Static and dynamic scheduling in high level synthesis.

shown in Figure 1. The most common flow of static approach con-
sists of 4 steps [9]: software compilation, static scheduling, allo-
cating & binding, and finite state machine (FSM) construction, as
shown in Figure 1(a). Compilation transforms the high-level program
into a software intermediate representation. Then, static scheduling
algorithm determines the execution time for operations considering
dependencies and resource constraints. For example, the add and
shift-right operations are placed in the first cycle (C@). Allocating
& binding algorithms explore the opportunity for resource sharing,
allocate necessary resources, and bind operations to them. Finally, a
finite state machine is constructed for RTL generation.

Static scheduling [3, 11, 17] is very effective for statically pre-
dictable programs such as perfect loops. Pipelining is a key optimiza-
tion technique to exploit parallelism among multiple loop iterations.
In sequential execution, one iteration can only begin after the pre-
vious iteration is finished. Pipelining allows iterations to overlap
which improves throughput and gain resource sharing. The distance
between two adjacent iterations is called initial interval (II) [18],
which is the indicator of throughput.

Dynamic scheduling generates a dataflow circuit by leveraging
elastic units [8], such as merge, branch, etc., as shown in Figure 1(b).
All data signals in dataflow circuits are accompanied by handshake
signals, which are valid and ready, in opposite directions, indicating
the availability of the next data from the source unit and the readi-
ness of the target unit to accept it, respectively. Static scheduling
makes conservative assumptions for unresolvable dependencies at
compile time. Dynamic scheduling overcomes this inefficiency by
postponing the scheduling decisions until run time, However, dy-
namic scheduling suffers from high resource consumption. Hybrid
scheduling combines static and dynamic schedulings [4, 5].

2.2 Intermediate Representation

Intermediate representation is an important abstraction to simplify
the design of compilation and synthesis flows. Compiler infrastruc-
tures like LLVM [26] and GCC apply machine-independent opti-
mizations and generate code for different target architectures based
on IRs. For example, Static single assignment (SSA) form [10] and
control dataflow graph (CDFG) representation are widely used in
compiler optimizations and static analysis. Many HLS tools [2, 24,
42, 43] adopt LLVM IR as their internal representation. However,
LLVM is a pure software IR that doesn’t contain any hardware in-
formation. [21, 30, 33, 37, 38] present hardware IRs that provide a
low-level abstraction to support hardware design.

MLIR [27] is a novel compiler infrastructure that provides pow-
erful scalability and modularity. MLIR greatly facilitates the imple-
mentation of various IRs and transformations among them. All IRs
in MLIR follow the SSA form and an explicit type system. Dialect in

HECTOR: A Multi-level Intermediate Representation for Hardware Synthesis Methodologies

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

' Loop node,
. leads a Joop body, which returns to

(a) Topology : (b) Node Type . (c) Structure ! (d) Syntax : (e) Operation
tor.topo (@ to 7) { ' Normal node, 3 @ sequential . ‘[Results]=tor.op [Operands] ' . 5 5
tor.from @ to 1 "seq:1" |leads a sequential edge. 0 #cycles g on (a to b) itor.for %i = %c@ to %cle step %cl {

”””””””””””””””””””””” %m = tor.load %mask[%i] on (@ to 1)

i call i [Results]=tor.call @callee | .,_ _ AP
i @@I:EIT. . ([Operands]) on (a to b) %a = tor.if %m then {

tor.from 1 to 2 "seq:1 | Call node,
tor.from 2 to 3 "call" fleadsacal/edge.
tor.from 1 to 4 "seq:2" e
tor.from 3, 4 to 5 "if" !|fnode, 1@§W,eﬂ\‘a....
tor.from 5 to 6 "seq:1" fleads two branches, each of which
tor.from @ to 7 "for" | flows into terminator through an empty |

{if edge. 3 Seq&gn@'... i

i tial
| source through back edge, and finally | peaes O00S :
! delivers to terminator through an empty | Togy i do { ... // tor.ops} '} on (@ to 7)
1 loop edge. ! , on (a to b) H

%x = tor.addi %i %cl on (1 to 2)
%y = tor.subi %i %cl on (1 to 2)
%fx =tor.call @f(%x, %y)on (2 to 3)
tor.yield %fx

} else {
%ii = tor.muli %i %i on (1 to 4)
tor.yield %ii

} on (1 to 5)

tor.store %a to %A[%i] on (5 to 6)

i E[Results]:‘tor.:’nc %cond
' then { ... // tor.ops }
' else { ... // tor.ops }
if

on (a to b)

‘[Results]=tor.for %i =
] %lb to %ub step %s
{iter_args_list}

Figure 2: The design of ToR IR. ToR IR consists of topology and functional operations. In (a), topology describes the time graph with
supplementary information on edges, where all edges and nodes are set ''static'' as default. In (e), operations are bound on the graph
according to the syntax in (d). The binding situation determines the types of nodes on the time graph, as shown in (b). (c) shows the

restrictions the node types set on the graph structure.

MLIR is a hierarchical structure template, allowing basic optimiza-
tions in MLIR to be reused. This hierarchy supplies an expressive
representation, which makes it easy to implement a flexible IR.

3 INTERMEDIATE REPRESENTATION

In this section, we present the details of the IRs including ToR (TOpo-
logical Representation) and HEC (Hierarchical Elastic Component).

3.1 Overview

Hector contains a two-level IR system, where ToR is the high-level
IR and HEC IR is the low-level IR. ToR IR combines a software-like
control flow with the schedule information of each operation. HEC
IR proposes an allocate-assign mechanism to explicitly describe
the relationship between computation and compute units. Both IRs
provide a uniform representation of the control logic with various
scheduling manners such as static and dynamic. The main difference
between the two IRs is that ToR describes when the operation begins,
while HEC describes where it takes place.

Thanks to the expressiveness of the two-level representation, Hec-
tor supports versatile hardware synthesis methodologies. ToR is
capable of providing a high-level abstraction of the scheduling infor-
mation. Both dynamic and static scheduling in HLS can be captured
by ToR IR. The allocation of hardware resources and binding of
operations can then be described in HEC IR. The entire HLS proce-
dure can then be obtained from a series of lowering transformations
based on Hector IR. Hector can also be used to describe hardware at
the architectural level, which is necessary for hardware generators.
The allocate-assign method in HEC makes it easier to describe the
interconnection between different modules at the low level, while
high-level scheduling transformations can be applied to ToR IR.

3.2 ToRIR

The software IR such as LLVM IR lacks hardware semantics. The
idea of the high-level IR is to make it closer to hardware by providing
a directed graph that carries control flow and timing information
and binding software operations to elements of the graph. ToR is
composed of two parts, topology and functional operations.
Topology describes a time graph, which is a directed graph de-
scribing control flow and timing information. Topology includes a

tor.topo (x to y) operation, which indicates the source node
x and sink node y, respectively. The tor.from operations inside
tor. topo specify edges of the time graph. Attributes add supple-
mentary information such as latency and scheduling manners to
the time graph. There are four types of nodes in the time graph
including normal, call, if and loop. Normal node leads a sequential
edge, where "seq: 2" indicates that the bounded operation takes two
cycles. Call node represents a function call, where "call" indicates
a state that stalls until the callee finishes. If a node leads two edges,
and loop node leads a loop body and loop back edge. The type of
each node on the time graph is determined by the operation binding.
The combination of these four node types is capable of describing
the schedule at high-level.

Three scheduling manners: static, pipeline, and dynamic, are
supported in ToR. Pipelining is a key optimization technique to im-
prove throughput. ToR supports pipelining by aligning branches of
all if operations and adding pipeline and IT attributes to modules.
Topology also supports dynamic behavior that resolves conflicts at
run-time. Stalling occurs only when the conflict occurs, avoiding the
conservative assumption of static behaviors. This unified representa-
tion makes it easier to transform among different behaviors.

Functional operations present the algorithmic specification with
high-level control flow semantics (e.g., if, for, and while). It binds
each operation to some element of the time graph, either a node or
an edge. To be specific, general operations (computation, memory
access, function call) are bounded on edges, while if/loop operations
are bounded on nodes. Functional operations specify functionality
and binding according to the syntax in Figure 2(d). For example, the
tor.load operation in Figure 2(e) is bounded on edge (@ to 1),
which loads the address %i of memory %mask. The tor. for opera-
tion that iterates from %c® to %c1 is bounded on node 0, and exits
the loop at the edge (@ to 7).

Figure 2 illustrates an example of ToR IR. The time graph in (a)
contains a loop, which is composed of two branches 1 — 2 — 3 and
1 — 4. There is also a function call on the edge 2 — 3, and the loop
exits at the edge 0 — 7. Figure 2(b)(c) present the four types of nodes
in the graph structure. Figure 2(e) shows the functional operations
which are bounded on the time graph. For example, the tor.for
operation is bounded on node 0, and the tor.muli is bounded on

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

%0=add %cstl %i
hec.assign %m.lhs=%0
hec.assign %m.rhs=%i

v NEE.dsS AT A TTIS=A
%i=hec.wire "i" :i32 : hec.assign %i=%m.res
(a) allocation | (b) assign
...................... o NIRRT bod St s SR
component @STG { ! component @Pipe { !component @Hs {
// allocations // allocations // instances

%m.lhs, %m.rhs, %m.res=

hec.primitive "m" is "muli"
1132, 132, i32

stateset { stageset { %f.a,r =

state @s0 { stage @s0 { instance . @f
// assigns // assigns // elastic units
transition { } // other stages: %m.il,i2,o0 =
goto@s1 ifY%c stage @sN { primitive. "merge”
goto@s2 //else // assigns graph {

deliver %x to %y assign %m.il=%f.r

:

:

:

} |
} //other states 1 assign %x=%m.o

]

:

:

:

}{}:"stg"} Paorallel }{}:"pipeline" ,II=1} }{}:"handshake"}
s

@s0 o[1]2]3 \W4
%c glse a=i*i |s+=a M|
@s1|@s2 ‘ a=i‘i |s+=a
(c) STG (d) Pipeline (e) Handshake

Figure 3: Allocate-assign mechanism and three styles of com-
ponents in HEC. (a) shows an example for unit allocation, where
hec.primitive allocates a '""'muli'' unit named "'m' with three
ports, and hec.wire declares a wire, which is commonly used
in HDLs. (b) shows the usage of combinational operations and
hec.assign for signal delivery among ports and wires. (c)-(e)
presents three component styles.

edge (1 to 2). As shown in Figure 4(a), there can be multiple
manners in the same time graph, which are attached to the time
graph as attributes like "seq: 2" and "dynamic".

3.3 HECIR

Here, we propose HEC IR, which describes hardware with differ-
ent manners in a unified allocate-assign mechanism depicted in
Figure 3(a)(b). Allocation explicitly defines all function units and
sub-modules on the datapath, and the signals of these units are
determined through assignments. The allocate-assign mechanism
omits the insertion of the multiplexer, simplifying the assignment of
signals.

Compared with ToR, HEC works at a level much closer to hard-
ware. It explicitly describes the resource usage (including registers,
memory, and compute units). Corresponding to the different behav-
iors in ToR: static, pipeline and dynamic, a HEC design is composed
of three types of components matching their manners as follows.

STG-style component. HEC describes a static module in a state
transition graph (STG) style. The hec.stateset operation defines
a set of states, as shown in Figure 3(c). Inside each state @sx,
hec.assign operations specify the signal delivery among the allo-
cated resources. Such representation naturally supports fine-grained
parallelism. There is also a tor.transition operation in every
state, specifying which state the control is transferred to, either un-
conditionally or based on guard signals. Based on the allocate-assign
mechanism, it is convenient to describe resource sharing in an STG-
style component by simply feeding signals into the shared resources
(either registers or compute units) inside different states.

Pipeline-style component. The component for a pipelined mod-
ule is described in a multi-stage style. HEC explicitly presents all
pipeline stages by hec. stage operations inside the hec.stageset

Ruifan Xu', Youwei Xiaol,Jin Luol, Yun Liang]'2

operation, as shown in Figure 3(d). For each value, HEC allocates a
register to carry it for each stage between its definition and the latest
use. This is because there may be time overlap between the lifetimes
of the same value in consecutive executions. Signal delivery de-
scription is similar to that of STG-style components, while resource
sharing additionally needs to consider the initial interval (II) for
conflict avoidance [12, 44]. We also define operation hec.deliver
to specify inter-iteration data delivery.

Handshake-style component. HEC describes the dynamic sub-
module in handshake style [8]. In order to simplify the description,
extra signals in the handshake protocol, such as valid and ready, are
hidden in this kind of component. With elastic units, such as branch
and fork, predefined as primitives in HEC, it is easy to describe
the interconnections among components with the allocate-assign
mechanism inside the hec. graph operation, as shown in Figure 3(e).

3.4 IR Implementation

Hector is built on a novel compiler infrastructure, MLIR [27], that
provides powerful scalability and modularity. Both IRs are imple-
mented as dialects in MLIR infrastructure. MLIR provides a generic
form of operations, which can be customized for new languages.
Besides basic operands and results, operations may have attributes
and regions. Figure 2(d) shows the functional syntax of operations
in ToR. There are two regions in tor.if representing two branches
separately. The nested region is naturally supported in MLIR, which
enables the definition of stateset and stageset in Figure 3(c)(d).
The different behaviors of schedule, the binding of operations and
the instantiation of sub-module are all implemented as attributes
including literal and symbolic references.

The two-level representation makes it easy to implement differ-
ent synthesis methods. ToR IR provides a high-level abstraction of
schedule information, and different scheduling approaches can be
easily implemented by transformation on the time graph. The explicit
representation of allocation in HEC IR brings the opportunity for re-
source sharing, which significantly reduces resource consumption.
The allocation of sub-modules forms a hierarchical representation
of hardware, which is capable of describing the architectural design.
The allocate-assign mechanism also simplifies the definition of in-
terconnection between different modules. Therefore, both HLS and
hardware generators can be easily implemented in Hector IR.

4 COMPILING IRS TO HARDWARE

To compile IR to hardware, Hector involves the following passes,
1) Time Graph Transformation (4.1), which converts the time graph
in ToR into subgraphs by outlining graph connection, 2) Lowering
from ToR to HEC (4.2), which produces HEC programs with the same
functionality of ToR through pipeline partition, control logic genera-
tion, and resource sharing, 3) RTL Generation (4.3), which generates
Chisel programs by implementing hardware controller and inserting
necessary signals. Figure 4 illustrates the main steps from HEC to
RTL implementation written in Chisel.

4.1 Time Graph Transformation

ToR’s semantics allows for the existence of multiple scheduling
manners in the same time graph. However, because different types

HECTOR: A Multi-level Intermediate Representation for Hardware Synthesis Methodologies

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

(a) Original program (b) Hybrid Time Graph Transformation

tor.module @hybrid(%a, %b) {
tor.topo (@ to 4) {
tor.from @ to 1 "dynamic"

1tor.modu1e @dynamic(%a, %b) {
tor.topo (@ to 4) {
tor.from © to 1 "dynamic"

tor.from 1 to 2 "seq:1" tor.from 1 to 3 "call"

tor.from 2 to 3 "seq:2" tor.from 3 to 4 "dynamic"

tor.from 3 to 4 "dynamic" L} !
} | %c = tor.addf %a, %b on (@ to 1)

%C

tor.addf %a, %b on (@ to 1) | %d = tor.subf %a, %b on (0 to 1) |
%d i

tor.subf %a, %b on (@ to 1) | %f = tor.call @pipeline(%c, %d)

%e tor.addf %c, %c on (1 to 2) ! on (1 to 3) !
%f = tor.mulf %d, %e on (2 to 3) | %g = tor.subf %f, 0.5 on (3 to 4)!
%g = tor.subf %f, ©.5 on (3 to 4) return %g :

return %g } {"dynamic"}

W;tor.module @pipeline(%c, %d) {

tor.topo (1 to 3) {
tor.from 1 to 2

"seq:1"
3 tor.from 2 to 3 "seq:2"

o R L :

1 1 2 ' | %e = tor.addf %c, %c on (1 to 2) !

Ewo ; 3 %f = tor.mulf %d, %e on (2 to 3)

| return %f

} {"pipeline", II=1}

(c) Lowering ToR to HEC

ec.component @dynamic(%a, %b, %g) {
submodule.c,d,f =

instance @pipeline
//elastic units allocation
f0.1in,outd,outl = primitive “fork”
graph {

assign %fe.in=%a

assign %addf.op@=%f0.outo

assign %subf@.op@=%f0.outl

assign %g=%subfl.result

//other assignments

¥
{"handshake"}

3 hec.component @pipeline(%c, %d, %f) {

stagetset {

(d) RTL generation

3 class dynamic extends MultiIOModule {

//I0 definition
val a = IO(DecoupledIO(UInt(64.W))
val submodule = Module(new pipeline)

//allocation
val f@ = Module(new fork)

f0.1in@ <> a

addf.opo <> fo.oute
subf@.op@ <> fo.outl
g <> subfl.result

i class pipeline extends MultiIOModule {

val c=I0(Input(64.W))

: } {"pipeline”, II=1} Ly

stage @s0f{

assign %addf.op@=%c

assign %addf.opl=%d

assign %reg@=%addf.result
}//other stages
stage @s2{deliver %reg2 to %f}

//allocation

val reg@ = Reg(UInt(64.W))
addf.opov := c

addf.opl :=d

regd := addf.result
//other stages

f: =reg2

Figure 4: An overall example for compiling Hector to hardware. The original module with hybrid manners is split into two modules with
dynamic and pipeline manners separately, and the connection between them is represented as a function call. Through resource and
register sharing, pure ToR modules are transformed to HEC components containing compute units and registers. RTL implementations
are generated by mapping ports and constructing controllers with the same functionality.

of hardware have different interfaces and cannot communicate di-
rectly with one another, this time graph is unsuitable for subsequent
transformations. This pass converts this time graph into multiple
sub-graphs where all edges and nodes have the same manner. The
connected sub-graph and related computation are defined as external
modules, and communication between the outer and inner modules
is accomplished through function calls.

In order to get inputs and outputs of the new function, we calculate
all live-in and live-out variables of the connected sub-graph. Live-in
variables are the arguments of the new function, and that function
returns the values of all live-out variables. As shown in Figure 4(a),
the connected sub-graph of time graph is marked by the red rectangle.
That time graph is split into two sub-graphs: a dynamic module and a
pipeline module described in Figure 4(b). The inner pipeline module
takes %c and %d as inputs, and returns the value of %f. This pass
ensures that only one type of hardware is considered in the following
transformations.

4.2 Lowering ToR to HEC

The time graph in static modules is converted to a low-level FSM
with the same functionality. For pipeline ToR modules, this pass
traverses the time graph and calculates the "distance" of each node
from the source node. The "distance" is indicated by “#cycle” at-
tribute of every time edge composing the path from the source node
to the current node. The time nodes with the same "distance" will
be placed in one stage. Each stage corresponds to a clock cycle, on
which the allocated time node starts the execution of the operations
whose start time is set as the current node.

In contrast to ToR, HEC specifies where the computation takes
place and where the intermediate value is stored. This opens up the
possibility of resource and register sharing, which allows disjoint
computations and values to share the same unit. ToR fits well in
such optimizations because of the high-level control flow and timing
information of computation contained in the time graph.

Resource and register sharing. Resource sharing can only hap-
pen between two operations that never occur at the same time, so
two disjoint operations mustn’t overlap in the time graph. We build
a conflict graph that shows all potential conflicts and uses a coloring
strategy to assign compute units to each node. As for register shar-
ing, we use a live range analysis on the time graph to calculate the
live range of each variable. The value of a variable in its live range
must be stored in a register unless it is used immediately. The main
difference between register sharing and resource sharing is that each
edge in the conflict graph represents an overlapping in live range.

As for hardware with dynamic behavior, each pair of operations
may happen at the same time, restricting resource sharing. As a
result, the lower pass just considers the generation of control logic.
The handshake protocol, which describes data transfer with valid and
ready signals, is used to implement the dynamic approach. This pro-
tocol is hidden in the HEC IR, which further simplifies the description.
Elastic components [8] are adopted to solve the synchronization of
tokens in the hardware with dynamic behavior. For example, branch
transfers the data to one of the outputs based on a condition, and
merge accepts one of the inputs which is similar to a ¢ function [10]
in software IR. We calculate the live-in and live-out variables of each
regions, and generate data transfer of variables among different re-
gion. After that, fork is inserted to synchronize multiple uses of the
same value, which is shown in Figure 4(c). Both addf and subf need
the value of %a, so a fork component is inserted for that variable.
The two outputs of fork are fed into addf and subf separately.

4.3 RTL Generation

HEC contains sufficient information to generate synthesizable RTL.
Each component in HEC has explicit I/O port definitions, assignments
of ports, a controller, and allocations of register and resource (in-
cluding memory, compute units, and other sub-component). The
RTL generation pass creates a Chisel [1] program by mapping each

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

component to a Chisel module with the same ports and assigning
the corresponding value to these ports. Chisel will automatically
insert the multiplexer, allowing for multiple assignments under dif-
ferent conditions. All of the built-in resources, such as memory and
compute units are implemented as a pre-defined Chisel Module.

Controller Generation. The STG-style component is controlled
by a state transition graph that contains a set of states and the tran-
sition between them, whereas the pipeline-style component is con-
trolled by a collection of stages and matching II. By inserting some
extra registers and wires, this pass builds a Chisel-style FSM for
these two types of components with the same functionality in ToR.
Due to the need to resolve conflicts at run-time, handshake-style
components do not have a centralized controller. For each port, the
handshake protocol is implemented as a Chisel class DecoupledIO
with ready, valid, and data signals. The Chisel program for a pipeline
component and a dynamic component is shown in Figure 4. The
controller of the pipeline component is eliminated because the II
equals one.

Wrapper construction. Due to the distinction between the handshake-

style component and the other two types of components, this pass
additionally generates a wrapper that attaches the handshake proto-
col to these components. Whether an STG-style (or pipeline-style)
component is valid and ready is determined by the component’s
completion (or the validity of the initial stage and final stage).

5 CASE STUDIES

We use Hector to build three synthesis approaches: an HLS tool, a
systolic array generator, and an accelerator component for sparse
linear algebra. These case studies are chosen to show how Hector
can be used to build various synthesis tools.

5.1 High-level Synthesis

Recently, [4, 5] demonstrates the effectiveness of hybrid scheduling.
Their design is based on LLMV IR. However, LLVM IR is mainly
a software compilation IR and lacks hardware semantics. There-
fore, one central question is what are the intermediate abstractions
suitable for both static and dynamic HLS scheduling?

In this case study, we build an HLS tool based on Hector to
demonstrate the generality of the proposed IR. MLIR provides sev-
eral built-in Dialects, such as Affine, SCF, and Standard [27]. SCF
Dialect describes static control flow in a higher-level abstraction
which is selected as the input of HLS. To build a complete HLS
flow, we additionally implement an SDC-based module schedul-
ing [44] that converts SCF Dialect to ToR. The scheduling result can
be easily represented by ToR because of the concise structure of the
time graph. Hybrid scheduling is also supported as a hybrid time
graph that contains multiple manners in the same graph. We design a
simple partition strategy on ToR that converts the manners of certain
edges from static to dynamic. This demonstrates that Hector can
flexibly support different HLS scheduling strategies.

Benchmarks. We evaluate using both regular and irregular ap-
plications. The regular kernels are selected from Machsuite[35]
including GEMM, Stencil2D, Stencil3D, and Spmv(CSR). These
four kernels do not have any branch, and thus are well suited for
static scheduling. The irregular kernels are AELoss Pull and AELoss
Push from the loss function of [32]. For these two kernels, a loop-
carried dependence resides inside the innermost loop. A considerable

Ruifan Xu', Youwei Xiaol,Jin Luol, Yun Liang]'2

amount of computation is guarded by an unpredictable condition,
which is seldom true.

Methodology. Polygeist[31] is used as Hector’s front-end to con-
vert C programs into SCF dialect in MLIR, then Hector generates an
RTL file in Verilog targeting FPGA part xc7z020clg484. We obtain
cycle numbers using RTL level simulation. Timing and resource
results are obtained from post synthesis report from Vivado 2021.1.

In the following, we first compare Hector with the state-of-the-
art HLS frameworks. Specifically, we compare static scheduling
in Hector with Vitis HLS [42] and dynamic scheduling with Dy-
namatic [24] !. For Vitis HLS, we apply pipeline directives on the
inner-most loop. For comparison with Dynamatic, we convert the
floating-point operations for benchmarks AELoss Pull and AELoss
Push to their integer equivalence because the open-source Dyna-
matic with floating-point computation fails to run. Then, we evaluate
the effect of our hybrid scheduling in Hector by comparing it with
static and dynamic scheduling. In Hector, we can switch between
static, dynamic, and hybrid scheduling by easily configuring the
scheduling modes provided as an attribute of SCF functions.

Comparison with state-of-the-art HLS. Table 1 demonstrates
that Hector can achieve comparable performance with Vitis HLS
and Dynamatic for the tested kernels. The number of DSP in Vitis
HLS is different because we use a different IP configuration. For
Stencil2D and Stencil3D benchmarks, we attribute the large con-
sumption of resources to our resource binding algorithm compared
with Vitis HLS. Hector generates smaller hardware than Dynamatic
because of Chisel’s internal optimizations, such as width analysis.
For the AELossPush benchmark, the resource usage of Dynamatic
is substantially higher because LLVM IR, the input language of Dy-
namatic, has too many basic blocks, which have a negative impact
on Dynamatic’s basic blocks based scheduling algorithm.

Hybrid scheduling. For the AELossPull benchmark, the major
bottleneck is caused by the loop-carried dependence guarded by a
condition. The loop-carried dependence causes a conservative Il in
static scheduling, while dynamic scheduling yields better throughput.
Our partition algorithm extracts out the operations except the ones
associated with the loop-carried dependence into a static submodule.
The submodule contains four floating-point multiplications and four
floating-point additions, which can be implemented by only two
multipliers and two adders in static scheduling. However, these oper-
ations can not share any resources in dynamic scheduling, leading
to massive DSP consumption. The hybrid scheduling can retain the
performance improvement of dynamic scheduling while reducing re-
source usage by enabling resource sharing inside static submodules.
Static (dynamic) scheduling is effective for pure regular (irregular)
applications, while hybrid scheduling is a promising solution for
complex applications with a mixture of regular and irregular behav-
iors. Overall, the hybrid scheduling improves the performance by
29% compared to static on average.

AELoss Push contains a two-level loop nest with conditions. The
comparison results between the three scheduling modes are similar
to AELoss Pull except for the higher FF usage in static and hybrid
scheduling. This is mainly because of our register allocation strat-
egy. The complicated loop nest and conditions exacerbate the buffer

'Dynamatic only provides one buffer insertion strategy based on a Mix ILP solver,
which is time-consuming and unscalable. Buffer insertion is disabled in both tools for a
fair comparison.

HECTOR: A Multi-level Intermediate Representation for Hardware Synthesis Methodologies

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

Table 1: Timing and Resource Comparison between Hector and Vitis HLS (Vitis), Dynamatic (DYN)

Slices LUTs FFs DSPs Cycles Period (ns) Time (ms)

Benchmark

Vitis ours ratio Vitis ours ratio Vitis ours ratio Vitis ours ratio Vitis ours ratio Vitis ours ratio Vitis ours ratio
GEMM 486 441 0.846 852 890 1.045 1958 1600 0.817 14 130929 3932.1k 3752.1k 0.954 5.073 414 0.816 19.948 15533 0.779
Stencil2D 47 138 2.936 94 192 2.043 188 370 1.968 3 4 1.333 3205k 3129k 0976 4.545 3.904 0859 1457 1221 0.838
Stencil3D 204 245 1.201 454 372 0.817 668 890 1.332 6 8 1333 1025k 103.7k 1.011 5.692 4.672 0.821 0.583 0.484 0.30
SPMYV (CSR) 502 438 0873 881 932 1.058 1934 1625 0.840 14 13 0.929 37.1k 342k 0920 5299 4.848 0915 0.197 0.165 0.842
Normalized mean 1.388 1.189 1.177 0.964 0.966 0.876 0.845

DYN ours ratio DYN ours ratio DYN ours ratio DYN ours ratio DYN ours ratio DYN ours ratio DYN ours ratio
AEloss Pull 115 99 0.860 331 280 0846 265 212 0.800 - - - 12.5k 147k 1.175 6.1 5569 0913 0076 0.082 1.073
AEloss Push 365 87 0.238 1118 250 0.224 900 199 0.221 - - - 3261k 2937k 0.901 6.2 55 0887 2022 1.616 0.799
Stencil2D 534 408 0.764 1626 1227 0.755 1379 891 0.646 - - - 4298k 398.6k 0.928 7.277 6.590 0.906 3.128 2.627 0.840
Normalized mean 0.621 0.680 0.556 - 1.001 0.901 0.903

Table 2: Timing and Resource Comparison between Hector’s static scheduling (S), dynamic scheduling (D) and hybrid scheduling (H)

. " Slices LUTs FFs DSPs Cycles Period (ns) Time (ms)

S D H S D H S D H S D H S D H S D H S D H
AELoss Pull 833 2001 1607 1844 5216 3447 3198 7193 7737 16 55 29 15.4k 9.7k 9.3k 5378 5.683 5765 0.083 0.055 0.054
AELoss Push 2539 2429 3058 4471 7593 7339 11123 8445 11543 6 15 12 1506.2k 9709k 723.6k 6.004 6.058 6.14 9.043 5.882 4.443
Stencil2D 138 442 138 192 1219 192 370 924 370 4 4 4 3129k 3049k 3129k 3.904 6.4 3904 1221 1951 1.221
Normalized mean 1 2139 1.378 1 3.625 1503 1 1.835 148 1 2313 1.6044 1 0748 0.695 1 1235 1.032 1 0969 0.713

insertion algorithm’s effect, while the regular behavior mitigates this
situation in static scheduling. As a result, hybrid scheduling pre-
serves the irregular behavior and achieves a better throughput with
the help of static submodules. As for the Stencil2D benchmark, the
partitioning algorithm chooses the whole program as a static module
because the computation has no branches and is very regular. In
that case, dynamic scheduling can only get comparable performance
while consuming a large number of resources.

The comparison result against existing HLS tools demonstrates
that Hector can fit well in HLS no matter with static, dynamic,
or hybrid manners. [5] implements a hybrid scheduling strategy
by partitioning LLVM IR into multiple functions and synthesizing
them with separate HLS tools. In contrast, Hector allows users
to customize HLS algorithms (such as the partitioning algorithm)
implemented as MLIR passes, which facilitates easy extension and
allows more optimization opportunities.

5.2 Systolic Array Generator

Systolic array is a class of accelerators where inputs or results pass
through the processor elements (PEs) [7, 22, 23]. In this case study,
we use Hector to build a systolic array generator. This generator
can generate PE arrays of arbitrary size given a PE’s configuration,
which can be written in either ToR or HEC. In addition, SCF Dialect
is also supported by reusing the previous HLS process (5.1).
Implementation. We use an elastic implementation that allows
each PE to stall if the data does not arrive or the subsequent PE
is not ready to receive new data. Supporting dynamic behavior is
critical, particularly when bandwidth is limited. When sufficient
bandwidth is ensured, an elastic systolic array performs similarly
to the static systolic array with the exception of a few more signals.
This dynamic behavior is implemented as an elastic interconnection
between the PE array. Figure 5 shows a 2x2 systolic array repre-
sented in HEC. The outer module is a dynamic style component that
enables the implementation to be elastic. All PEs are instantiated

component @PE(%Ain, %Bin, %Aout, %Bout) {}
component @Systolic_Array(...) {

//Instantiate PE Array
%pe_00.Ain, Bin, Aout, Bout = instance @PE
%pe_01.Ain, Bin, Aout, Bout = instance @PE
%pe_10.Ain, Bin, Aout, Bout = instance @PE
%pe_11.Ain, Bin, Aout, Bout = instance @PE
graph {

assign %pe_01.Ain = %pe_00.Aout

assign %pe_10.Bin = %pe_00.Bout

assign %pe_11.Ain = %pe_10.Aout

assign %pe_11.Bin = %pe_01.Bout
}

¥

Figure 5: A 2xn by nx2 matrix multiplication systolic array
described in HEC. The interconnection between PEs is described
as hec.assign.

from the corresponding component, and data movement between
PEs is explicitly stated as hec.assign.

A single PE can be configured at multiple levels. For the PE with
simple behavior, SCF Dialect can be automatically lowered using the
approach described in subsection 5.1. HEC can be used in applications
with no resource limitations, and ToR is capable of handling complex
designs. This once again demonstrates the advantages of multi-level
IR. Pipelined PE can be easily expressed at these levels due to the
explicit pipeline in both levels.

Comparison against Calyx. Calyx [33] also provides a static
systolic array generator for demonstration purposes, but it lacks
the expressivity required for hardware generation. More than 3000
lines of code are required to describe an 8x8 systolic array. The
fundamental reason is that the control logic is described in a flattened
representation that explicitly represents all data moves at each cycle.
Another issue in Calyx is that it lacks a pipeline primitive, prohibiting
all PEs in generated hardware from being pipelined. In real-world
applications, interleaving multiple calculations is commonly used to

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

1200 Vitis HLS
- M Calyx
§ 900 H Tensorlib
o W Hect
o 600 ector
S 300 l

0 - ___ — e -
4x4 8x8 16 x 16 32x32
Input size

Figure 6: Cycle count comparison between different implemen-
tations of matrix multiplication.

Table 3: The comparison between Vitis HLS and Hector.

Line of Codes Initial Interval
Hector (RTL) 35 1
Vitis HLS 111 1

improve resource utilization ratio, but the lack of pipeline primitives
makes this optimization impossible.

Evaluation. We evaluate matrix-multiplication kernels ranging
from 4x4 to 32x32. The PE configuration of the systolic array is
written in SCF, which is automatically lowered to HEC. Aside from the
systolic arrays generated by Hector and Calyx, we implement a basic
program in Vitis HLS that uses pipeline pragma in the inner-most
loop. We optimize the HLS implementation by unrolling the outer
two loops and partitioning all the matrices in the proper dimension
to make a fair comparison. We also compare it with Tensorlib [22], a
state-of-the-art systolic array generator. The experiment targets Zynq
UltraScale+ XCZU3EG FPGA at a 7ns clock period, which is the
same as Calyx’s setup. We compare the cycle counts of the designs
(Figure 6). Hector supports pipeline PE, which further optimizes
the performance by interleaving multiple computations. On average,
the systolic array generated by Hector improves the performance by
5.6x improvement compared to optimized HLS implementation. In
comparison to the HLS implementation, Calyx implementation with
sequential PEs can only achieve 79% performance, demonstrating
the importance of pipeline semantics. Hector can achieve the same
performance with Tensorlib thanks to the structural description and
pipeline support.

The experiment results demonstrate Hector’s versatility in apply-
ing domain-specific approaches, which is difficult to express in HLS
tools. With architectural information, Hector can outperform the
general-purpose HLS tool. The multi-level paradigm also provides
the capability to design hardware at various levels.

5.3 Shuffle Unit

Shuffle unit is the key hardware component that solves bank conflicts
between multiple PEs, which has been used in sparse matrix-vector
multiplication (SPMV) design [13]. Each pair of streams may access
an arbitrary bank determined by the column index, resulting in traffic
conflict. However, it is challenging to implement the shuffle unit
with optimized throughput in HLS tools [13]. In static scheduling,
the conservative assumption of traffic pattern results in a big II, and
dynamic scheduling is not suited to generate efficient control logic.
Therefore, it’s better to implement the shuffle unit at the RTL. In
Hector, the combination of RTL and other synthesis approaches is
simple. RTL design can be easily integrated with other synthesis
approaches using the Chisel programs and dummy representations.

Ruifan Xu', Youwei Xiaol,Jin Luol, Yun Liang]'2

We use Hector to construct an RTL design and simplify a pipeline
kernel [13] written in Vitis HLS. The RTL implementation takes
only 35 lines to implement the control logic, while the optimal HLS
implementation uses 111 lines. As previously stated, the conservative
assumption in HLS results in a large II. Due to explicit control logic
in HLS implementation, it gets the optimal II which matches the
RTL implementation. The experiment demonstrates that HLS is
not suitable for control logic. Therefore, combining HLS and RTL
design is a superior option for achieving good performance while
maintaining enough productivity.

6 RELATED WORKS

Domain-specific languages. DSLs provide a higher level of ab-
straction that is natural to the domain, assisting in the generation of
hardware with expert knowledge. Raghu Prabhakar et al. [34] adopt
parallel patterns like map and fold to express high-level computation.
Actherling [14] aims at generating streaming accelerators by apply-
ing transformations to the proposed data-parallel IR. Nithin George
et al. [15] generate hardware systems from applications written in a
machine-learning DSL. HeteroCL [25] provides an abstraction that
decouples algorithm description and architecture specification, and
develops a compilation flow to heterogeneous computing platforms.
Apart from domain-specific optimizations, extra compilation to the
RTL program is required, which makes it difficult for researchers to
generate hardware quickly.

IR for hardware. FIRRTL [21] that obeys AST format is the in-
termediate representation in Chisel. LLHD [37] is a three-level IR
that aims at different applications including simulation, verification,
and logic synthesis. tIR [38] uses dynamic scheduling based on
task-level parallelism and briefly presents a task-level representation.
Wau et al. and synASM [39, 41] propose a CDFG representation for
hardware and software. AHIR [36] proposes a low-level abstraction
that decouples the datapath and control path. Calyx[33] provides
software-like control flow primitives such as seq, par, and while to
describe hardware. The goal of CIRCT [6] is to construct a reusable
and modular infrastructure for the entire hardware generation includ-
ing high-level synthesis and logic synthesis. This project is still in
progress and absorbs existing IR designs like Calyx and LLHD.

7 CONCLUSION

In this paper, we propose Hector, a two-level IR providing a unified
description for different synthesis methodologies. Through a series
of transformations and optimizations based on the MLIR infras-
tructure, Hector’s IRs are finally converted to synthesizable RTL
programs. We demonstrate the expressivity and effectiveness of our
design by implementing three synthesis approaches. The experiment
results show that Hector can generate comparable hardware designs
with existing HLS tools in terms of performance and resource utiliza-
tion. With the combination of different methodologies, it’s simple
for Hector to outperform HLS tools. Moreover, the open-source
framework provides flexibility to customize synthesis approaches
and allows users to explore advanced techniques.

8§ ACKNOWLEDGMENTS

This work is supported in part by National Natural Science Founda-
tion of China (NSFC) under grant No.62090021.

HECTOR: A Multi-level Intermediate Representation for Hardware Synthesis Methodologies

REFERENCES

[1]

[2

3

[4

[5

[6

[7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

(23]

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-
mas Avizienis, John Wawrzynek, and Krste Asanovic. 2012. Chisel: Constructing
hardware in a Scala embedded language. In DAC Design Automation Conference
2012.

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: High-
Level Synthesis for FPGA-Based Processor/Accelerator Systems. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (Monterey, CA, USA) (FPGA ’11).

Hongzheng Chen and Minghua Shen. 2019. A Deep-Reinforcement-Learning-
Based Scheduler for FPGA HLS. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD).

Jianyi Cheng, Lana Josipovic, George A. Constantinides, Paolo Ienne, and John
Wickerson. 2020. Combining Dynamic & Static Scheduling in High-Level Syn-
thesis. In Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA ’20).

Jianyi Cheng, John Wickerson, and George A. Constantinides. 2022. Finding and
Finessing Static Islands in Dynamically Scheduled Circuits. In Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Virtual Event, USA) (FPGA ’22).

CIRCT Community. 2021. CIRCT: Circuit IR Compilers and Tools. Retrieved
March 7, 2021 from https://github.com/llvm/circt

Jason Cong and Jie Wang. 2018. PolySA: Polyhedral-Based Systolic Array Auto-
Compilation. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD).

J. Cortadella, M. Kishinevsky, and B. Grundmann. 2006. Synthesis of synchronous
elastic architectures. In 2006 43rd ACM/IEEE Design Automation Conference.
Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andres Takach. 2009.
An Introduction to High-Level Synthesis. IEEE Design Test of Computers 26, 4
(2009).

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. 1991. Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (Oct. 1991).
Steve Dai and Zhiru Zhang. 2019. Improving Scalability of Exact Modulo Schedul-
ing with Specialized Conflict-Driven Learning. In Proceedings of the 56th Annual
Design Automation Conference 2019 (Las Vegas, NV, USA) (DAC ’'19).

Steve Dai and Zhiru Zhang. 2019. Improving Scalability of Exact Modulo Sched-
uling with Specialized Conflict-Driven Learning. In 2019 56th ACM/IEEE Design
Automation Conference (DAC).

Yixiao Du, Yuwei Hu, Zhongchun Zhou, and Zhiru Zhang. 2022. High-
Performance Sparse Linear Algebra on HBM-Equipped FPGAs Using HLS: A
Case Study on SpMV. In Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA
22).

David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Hanrahan.
2020. Type-Directed Scheduling of Streaming Accelerators. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020).

Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J. Brown,
Arvind K. Sujeeth, Martin Odersky, Kunle Olukotun, and Paolo Ienne. 2014.
Hardware system synthesis from Domain-Specific Languages. In 2014 24th Inter-
national Conference on Field Programmable Logic and Applications (FPL).
Kartik Hegde and et al. 2019. ExTensor: An Accelerator for Sparse Tensor
Algebra. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (Columbus, OH, USA) (MICRO ’52).

Hsuan Hsiao and Jason Anderson. 2019. Thread Weaving: Static Resource Sched-
uling for Multithreaded High-Level Synthesis. In 2019 56th ACM/IEEE Design
Automation Conference (DAC).

Yu-Chin Hsu and Yuang-Long Jeang. 1993. Pipeline scheduling techniques in
high-level synthesis. In Sixth Annual IEEE International ASIC Conference and
Exhibit.

IEEE. 1076-2008. VHDL Language Reference Manual.

IEEE. 1364-2005. Standard for Verilog Hardware Description Language.

Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Mag-
yar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. 2017. Reusability is FIRRTL Ground: Hardware Construction Lan-
guages, Compiler Frameworks, and Transformations. In Proceedings of the 36th
International Conference on Computer-Aided Design (Irvine, California) (ICCAD
’17).

Liancheng Jia, Zizhang Luo, Ligiang Lu, and Yun Liang. 2021. TensorLib: A
Spatial Accelerator Generation Framework for Tensor Algebra. In 2027 58th
ACM/IEEE Design Automation Conference (DAC).

Liancheng Jia, Yuyue Wang, Jingwen Leng, and Yun Liang. 2022. EMS: Efficient
Memory Subsystem Synthesis for Spatial Accelerators. In 2022 59th ACM/IEEE
Design Automation Conference (DAC).

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

Lana Josipovi¢, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically Scheduled
High-Level Synthesis. In Proceedings of the 2018 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (Monterey, CALIFORNIA, USA)
(FPGA '18).

Yi-Hsiang Lai and et al. 2019. HeteroCL: A Multi-Paradigm Programming
Infrastructure for Software-Defined Reconfigurable Computing. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (Seaside, CA, USA) (FPGA ’19).

C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO).

Yun Liang, Kyle Rupnow, Yinan Li, Dongbo Min, Minh N. Do, and Deming Chen.
2012. High-Level Synthesis: Productivity, Performance, and Software Constraints.
JECE 2012, Article 1 (jan 2012), 1 pages. https://doi.org/10.1155/2012/649057
Xinheng Liu, Yao Chen, Tan Nguyen, Swathi Gurumani, Kyle Rupnow, and
Deming Chen. 2016. High Level Synthesis of Complex Applications: An H.264
Video Decoder. In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA '16).
Ligiang Lu, Naiging Guan, Yuyue Wang, Liancheng Jia, Zizhang Luo, Jieming
Yin, Jason Cong, and Yun Liang. 2021. TENET: A Framework for Modeling
Tensor Dataflow Based on Relation-Centric Notation. In Proceedings of the 48th
Annual International Symposium on Computer Architecture (Virtual Event, Spain)
(ISCA "21). IEEE Press. https://doi.org/10.1109/ISCA52012.2021.00062
William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. 2021.
Polygeist: Raising C to Polyhedral MLIR. In 2021 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT).

Alejandro Newell, Zhiao Huang, and Jia Deng. 2017. Associative Embedding:
End-to-End Learning for Joint Detection and Grouping. In Proceedings of the
31st International Conference on Neural Information Processing Systems (Long
Beach, California, USA) (NIPS’17).

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A Com-
piler Infrastructure for Accelerator Generators. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (Virtual, USA) (ASPLOS 2021).

Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee, Christo-
pher De Sa, Christos Kozyrakis, and Kunle Olukotun. 2016. Generating Config-
urable Hardware from Parallel Patterns. SIGPLAN Not. 51, 4 (mar 2016).
Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. MachSuite: Benchmarks for accelerator design and customized ar-
chitectures. In 2014 IEEE International Symposium on Workload Characterization
(LISWC).

Sameer D. Sahasrabuddhe, Hakim Raja, Kavi Arya, and Madhav P. Desai. 2007.
AHIR: A Hardware Intermediate Representation for Hardware Generation from
High-level Programs. In 20th International Conference on VLSI Design held
Jjointly with 6th International Conference on Embedded Systems (VLSID’07).
Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020. LLHD: A
Multi-Level Intermediate Representation for Hardware Description Languages. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020).

Amirali Sharifian and et al. 2019. uIR -An Intermediate Representation for
Transforming and Optimizing the Microarchitecture of Application Accelera-
tors. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (Columbus, OH, USA) (MICRO ’52).

Rohit Sinha and Hiren D. Patel. 2012. synASM: A High-Level Synthesis Frame-
work With Support for Parallel and Timed Constructs. /EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 31, 10 (2012).

Shuo Wang, Yun Liang, and Wei Zhang. 2017. FlexCL: An analytical performance
model for OpenCL workloads on flexible FPGAs. In 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC).

Qiang Wu and et al. 2002. A hierarchical CDFG as intermediate representa-
tion for hardware/software codesign. In IEEE 2002 International Conference on
Communications, Circuits and Systems and West Sino Expositions, Vol. 2.
Xilinx. 2021. Vitis High-Level Synthesis. Retrieved March 7, 2021 from https:
/Iwww.xilinx.com/products/design-tools/vivado/integration/esl-design.html
Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. 2022. ScaleHLS: A New Scalable High-Level
Synthesis Framework on Multi-Level Intermediate Representation. In 2022 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
Zhiru Zhang and Bin Liu. 2013. SDC-Based modulo Scheduling for Pipeline
Synthesis. In Proceedings of the International Conference on Computer-Aided
Design (San Jose, California) (ICCAD ’13).

