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Abstract
Domain-specific accelerators provide an increasingly valu-
able source of performance for diverse applications. Custom
instructions that trigger the execution of dedicated hard-
ware units or accelerators for common application functions
become key building blocks in modern computing systems,
balancing performance and cost effectiveness. RISC-V, the
open and extensible instruction set architecture, is increas-
ingly popularizing this trend. However, exploring custom
instructions for an application domain remains challenging.
Existing automated approaches suffer from poor reusability
and limited performance. They can only identify or merge
syntactically similar, scalar instruction sequences while miss-
ing semantically equivalent patterns.
We present ISAMORE, an end-to-end framework for dis-

covering reusable custom instructions from domain applica-
tions. ISAMORE encodes general applications in an e-graph
by constructing a structured domain-specific language. Its
core methodology, reusable instruction identification (RII),
leverages e-graph anti-unification (AU) to identify seman-
tically equivalent common patterns across diverse applica-
tions, fully unleashing the potential of custom instructions.
RII employs a phase-oriented iterative process with smart
heuristics to enhance the scalability when dealing with real-
world codebases. Besides, RII introduces the novel pattern
vectorization technique, packing common operations from
scalar programs into lanes of vectorized custom instructions
to exploit data-level parallelism. Moreover, RII’s Pareto-
optimal pattern selection balances performance gains with
area overheads, guided by a profiling-based hardware-aware
cost model. Evaluation demonstrates ISAMORE’s substantial
performance gains, 1.12×-2.69×, over baseline approaches.
We also demonstrate ISAMORE’s practical potentials using
various case studies, including library analysis for three ap-
plication domains and hardware specialization for quantized
LLM inference and post-quantum cryptography.

∗Corresponding author.

1 Introduction
The relentless advancement of modern computational do-
mains—such as digital signal processing [28, 60] and artifi-
cial intelligence [18, 47, 72]—has outpaced the capabilities
of general-purpose processors. These fields demand com-
puting power to meet the constraints of resource-limited
systems like IoT devices and edge platforms. Custom in-
structions (CIs) coupled with specialized hardware units
or accelerators have emerged as a powerful solution. The
rise of the open and modular instruction set architecture
RISC-V has further democratized this trend, enabling the
wide adoption of various application customizations. Cus-
tom instructions can be flexibly added to the open-source
RISC-V processors [7] and system-on-chips (SoCs) [6] for
domain-specific acceleration. From the perspective of soft-
ware, they can be invoked as naturally as native instructions
and adopted seamlessly by existing compilers, preserving
compatibility with established RISC-V software stacks to
avoid nonnegligible software adaptation costs.
Designing these custom instructions, however, is a com-

plex endeavor requiring expertise across both software and
hardware domains. On the software side, developers must
analyze workloads to identify performance bottlenecks and
uncover common execution patterns that deserve accelera-
tion. On the hardware side, the challenge lies in crafting
accelerators and ensuring their smooth integration into the
processor implementation. Application-specific instruction-
set processor (ASIP) design tools [23, 50, 57, 69, 73] and
accelerator design languages [16, 48, 49, 68, 70] ease some
burdens by automating hardware generation, but they still
leave the software-side efforts to human experts. Instruc-
tion customization frameworks [21, 29, 31, 53, 59, 67] aim to
bridge this gap by automating the entire process from pat-
tern identification to hardware implementation. Despite their
promise, prior approaches suffer from a critical shortcom-
ing: low reusability. Specifically, custom instructions occupy
valuable core areas, making it essential to reuse them across
different parts of an application or even multiple workloads.
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However, existing methodologies concentrate on program
hotspots, identifying program segments that execute repeat-
edly without considering reusability. Still, they only support
syntactic merging [32, 59, 63] of similar patterns, but overlook
semantic equivalence for full reusability. Our study shows
that for CImg [25], the syntactic merging approach generates
a large, over-specialized custom instruction, which is only
used by 8 spots of the profiled applications. However, by
considering semantic reusability, every custom instruction
can accelerate 93 spots on average, achieving 1.17× more
speedup with 90.5% area saving.

We propose a novel methodology, reusable instruction iden-
tification (RII), to identify reusable custom instructions. The
core idea of RII is to adopt e-graph anti-unification (AU) to
generalize common substructures from the representative
applications into reusable patterns. The rationale is that the e-
graph data structure compactly represents sets of equivalent
terms from the encoded application programs. After applying
equality saturation (EqSat) with equational rewrite rules, RII
identifies common patterns by anti-unifying [34, 37] pairs of
e-classes, which requires the identified patterns to occur at
least twice, fundamentally considering reusability for custom
instructions. In addition, common expressions performed
on multiple lanes can also be considered as reuse oppor-
tunities from scalar programs, creating vectorized custom
instructions of data-level parallelism (DLP). Consequently,
the RIImethodology innovatively adopts e-graph to identify
reusable and parallel custom instructions.

We introduce the ISAMORE framework, which implements
RII with novel algorithms and strategies. Applying e-graph
AU for custom instruction identification faces many chal-
lenges. The first challenge is how to represent application
programs with casual control flow branching in an e-graph.
ISAMORE introduces a structured domain-specific language
(DSL) to encode programs as e-graph terms, providing design
entries for e-graph AU. The second challenge is how to scale
the e-graph AU for real-world applications. The scalability
issues are attributed to EqSat’s exploding e-graph size and e-
graph AU’s pattern identification complexity, both of which
grow exponentially to become intractable. RII introduces
a phase-oriented iterative process for pattern identification,
which applies partial rewrite rules in each phase for EqSat
to control the e-graph scale. The iterative flow also identifies
patterns over previously identified ones, leading to more
reusable patterns. To overcome e-graph AU’s exponential
complexity, RII introduces smart AU techniques. It conducts
structural hashing and term typing on the e-graph to filter
e-class pairs of high similarity and consistent term types,
instead of exhaustive traversals on all e-graph pairs. It also
introduces heuristic pattern sampling strategies to reduce
the design space to only useful patterns.

For the last challenge, how to identify custom instructions
for ideal performance gains, RII introduces a hardware-aware
cost model and a multi-objective pattern selection process to

explore tradeoffs between performance gains and hardware
overheads of the synthesized custom instructions. RII fur-
ther introduces the pattern vectorization technique, which
identifies seeds through e-graph AU and produces vectorized
custom instructions through e-graph operations, exploiting
DLP potentials. To the best of our knowledge, ISAMORE is
the first end-to-end framework to customize reusable and
parallel instructions from real-world applications through
scalable e-graph anti-unification.

This work offers the following contributions:

• We introduce reusable instruction identification (RII), the
first practical methodology that identifies reusable custom
instructions through e-graph anti-unification.

• We propose a phase-oriented iterative process with smart
AU, pattern vectorization, and hardware-aware selection
techniques to improve tractability and instruction quality.

• Wepresent an open-source1, end-to-end framework, ISAMORE,
that implements RII for systematic custom instruction
identification from real-world domain applications.

Evaluation. We evaluate ISAMORE on nine benchmark ker-
nels and one compound benchmark comprised of all the
kernels, showing that ISAMORE outperforms two reusability-
unaware instruction customization baselines, including a
fine-grained enumeration approach combining [22, 29] and
the coarse-grained NOVIA [59], by up to 2.69×. We also con-
duct rich case studies for evaluation. We run ISAMORE on
open-source libraries for three application domains, show-
ing 1.17×-2.73× speedup against NOVIA and demonstrating
ISAMORE’s scalability. We further run ISAMORE to generate
RoCC [7] accelerators for both quantized large language
model (LLM) inference and post-quantum cryptography (PQC)
algorithm, running RTL simulation and physical implemen-
tation for precise evaluation. The case studies demonstrate
ISAMORE’s practical effectiveness in identifying and imple-
menting custom instructions for real-world applications.

2 Background and Motivation
This section presents the background of instruction cus-
tomization and the potential of e-graph-basedmethodologies
as a solution for finding reusable instructions.

2.1 Instruction Customization Landscape
As summarized in Table 1, prior custom instruction design ap-
proaches fall into three main categories. Manual description-
based approaches, supported by commercial [12, 23, 57] and
academic [50] tools, empower expert designers to specify
custom instructions using architecture description languages
(ADLs). These tools offer high flexibility but are inherently
non-automatic, requiring significant manual effort. In con-
trast, automated approaches identify custom instructions

1https://github.com/pku-liang/ISAMORE
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Table 1. Comparison of instruction customization works

Approach
Auto-
-matic?

Reuse-
aware

Merging
strategy Granularity

Vectori-
-zation?

Description
[12, 23, 50, 57]

✘ / / SG BB HB CF ✔

Fine-grained
[21, 22, 29, 53]

✔ ✘ syntactic SG BB HB CF ✘

Coarse-grained
[31, 32, 59]

✔ ✘ syntactic SG BB HB CF ✘

ISAMORE
(This work)

✔ ✔ semantic SG BB HB CF ✔

Prior work
Hot BB

a×2+b×2
Hot BB

Candidates
[mux(a×2,1)

 +mux(b×2,i)

]<<mux(0,1)

CIs

Overlook

ISAMORE

CIs
(x+y)*z

Find reusable CIs across a domain 

...

(1+i)<<1

E-graph
a×2+b×2⇝(a+b)×2
(m+2)×n⇝(m+2)×n
(1+i)<<1⇝(i+1)×2

Cold BB

program

CF

enum
merge

Syntactic-only
Costly MUXs

program

encode
AU

EqSat

Figure 1. Comparison example of instruction customization.

directly from application code. Early works explored fine-
grained automation [21, 22, 53], enumerating small, convex
subgraphs within basic blocks. Their limited scope often
misses larger, more impactful optimization opportunities.
Coarse-grained methods [31, 32, 59] merge code scopes, such
as basic blocks, to create larger custom instructions.
Despite these advancements, significant limitations re-

main. A primary issue is low reusability. Automated meth-
ods, whether fine-grained or coarse-grained, rely on syntac-
tic analysis of program hotspots, overlooking the semantic
equivalence that could enable a single custom instruction
to accelerate multiple, syntactically different code segments
across the whole application. This leads to over-specialized
custom instructions with poor utilization. Figure 1 shows an
example of over-specialization. Existing methods only con-
sider two expressions from the hotspot basic blocks, a×2+b×2
and (1+i)«1, and syntactically merge them to generate the
custom instruction of four operations and threeMUXs, which
is hard to reuse and inefficient in hardware implementation.
Instead, our semantic-aware approach identifies a concise
and reusable custom instruction of two operations.

This frequently happens in real-world applications. We an-
alyzed three open-source libraries as detailed in Section 7.2.1,
and found that syntactic merging generates inefficient cus-
tom instructions that are reused by only 6.4-9.0 times. In
comparison, considering semantic reusability during iden-
tification, the average reuse factor per instruction rises to
19.1-93.0, achieving an average speedup of 1.17×-1.64× with

E-graph G = ⟨𝐶,𝑀⟩, 𝑀 : I → 𝐶

E-class ids 𝑎, 𝑏 ∈ I
E-nodes 𝑛 ::= 𝑠 (𝑎1, . . . , 𝑎𝑘 ) ∈ 𝑁, 𝑠 ∈ Σ

E-classes 𝑐 ::= {𝑛1, . . . , 𝑛𝑚} ∈ 𝐶
Rewrite rule 𝑙 ⇝ 𝑟, where 𝑙, 𝑟 ∈ T (Σ,X)

E-class AU 𝐴𝑈 (𝑎, 𝑏) =
⋃

𝑛𝑎∈𝑀 (𝑎),𝑛𝑏 ∈𝑀 (𝑏 )
𝐴𝑈 (𝑛𝑎, 𝑛𝑏 )

E-node AU 𝐴𝑈 (𝑠 (𝑎1, . . . , 𝑎𝑘 ), 𝑠 (𝑏1, . . . , 𝑏𝑘 ))
= {𝑠 (𝑝1, . . . , 𝑝𝑘 ) | 𝑝𝑖 ∈ 𝐴𝑈 (𝑎𝑖 , 𝑏𝑖 )} (0)

𝐴𝑈 (𝑠1 (. . .), 𝑠2 (. . .)) =?𝑥 , if 𝑠1 ≠ 𝑠2

Figure 2. Formulas for e-graph anti-unification. Σ denotes a
set of constructors. T (Σ,X) denotes the set of patterns over
Σ and X, the set of variables. ?𝑥 denotes a new variable.
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Figure 3. E-graph and anti-unification example.

84.0%-93.2% area saving. Another critical flaw is restricted
parallelism. Table 1 shows that prior works overlook data-
level parallelism (DLP) to generate vectorized custom in-
structions. We studied a set of benchmark kernels as de-
tailed in Section 7.1, and found that exploiting DLP further
improves performance by up to 1.68× compared to scalar
custom instructions. These remarkable potentials for im-
provement motivate us to explore an automated, semantic-
aware methodology to identify reusable and parallel custom
instructions.

2.2 E-graph Anti-Unification
To overcome the limitations of syntactic analysis, our work
leverages a powerful combination of the e-graph [45] and
anti-unification [13]. An e-graph is a data structure that com-
pactly represents semantically equivalent terms. As formally
defined in Figure 2, an e-graph consists of e-classes, which
group together equivalent e-nodes. Each e-node represents a
function symbol (also referred to as constructor in this paper)
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applied to argument e-class identifiers. For instance, Fig-
ure 3a shows an initial e-graph that contains the expressions
in Figure 1, such as a×2+b×2, with each dashed rectangle
denoting an e-class. The true power of an e-graph is un-
locked through equality saturation (EqSat), a process that
exhaustively applies rewrites from the given ruleset to find
all equivalent terms. During the process, each rewrite rule
searches its left-hand side (LHS) pattern within the e-graph,
and for every match, instantiates a new e-node (if not ex-
istent) according to the right-hand side (RHS) pattern and
unions e-classes. Figure 3b illustrates this: applying the rule
?x×c+?y×c ⇝ (?x+?y)×c creates two e-nodes for the term
(a+b)×2, with the root merged into the blue dotted e-class.

While EqSat reveals equivalence, anti-unification (AU) re-
veals commonalities. AU is a generalization technique that
computes the least general generalization [34, 37] of two
terms, creating a template that captures their common struc-
ture. For example, anti-unifying (a+b)×2 and (1+i)×2 yields
(?x+?y)×2. Building on this, Cao et al. [13] proposes the li-
brary learning modulo theories (LLMT) algorithm, which runs
EqSat and performs AU on the saturated e-graph to general-
ize the common patterns. As formalized in Figure 2, e-graph
anti-unification recursively traverses pairs of e-classes and e-
nodes to find sets of common patterns. As shown in Figure 3c,
by anti-unifying the e-classes for (a+b)×2 and (1+i)«1, the
algorithm can identify a pattern (?x+?y)×2. This ability to
find common patterns among semantically equivalent terms
is the key insight of our work.

LLMT cannot be directly applied to the custom instruction
identification task due to the following challenges. First, it
cannot take general programs with unstructured control
flow as input, which cannot be represented as e-graph terms.
Second, the scalability of the e-graph size and the number
of AU patterns grows exponentially, making the process in-
tractable. Specifically, it exhaustively enumerates every pair
of e-classes, and, for each pair, traverses their term structures
to generate all possible anti-unifiers as candidate patterns,
whose number grows exponentially due to the Cartesian
product of child e-class AUs for every e-node pair, as shown
in Figure 2. In our evaluation, LLMT failed to complete most
cases with >150 e-classes under practical resource limits
(30GB memory), while most real-world applications exceed
2000 e-classes. Third, it cannot achieve ideal performance
gains since it does not fully exploit parallelism opportunities
and use program size minimization as the optimization objec-
tive, whichmisaligns with the instruction customization task.
These challenges necessitate a fundamental rethinking of e-
graph anti-unification for custom instruction identification,
motivating this work.

RII

Phase

Domain programs

LLVM

DSL

profile

Ruleset generation

vectorize

EqSat smart AU

select

Cost
model

E-graph

Scheduler
Ruleset

extract

Patterns

CI0,CI1,...

PDK HLS

HLS

Figure 4. Overview of the ISAMORE framework.

3 Framework Overview
As illustrated in Figure 4, ISAMORE is an end-to-end frame-
work that begins with a set of domain-representative pro-
grams and finally generates sets of custom instructions. The
compiled LLVM IR is translated into ISAMORE’s structured
DSL to be encoded as an e-graph, which serves as the de-
sign entry of the subsequent flow (Section 4). RII, the core
methodology of ISAMORE, is a phase-oriented iterative pro-
cess for identifying reusable patterns (Section 5.1). The offline
ruleset generation process constructs the rulesets for each
RII phase to apply. RII innovatively introduces the smart AU
technique for scalable e-graph anti-unification (Section 5.2),
and proposes pattern vectorization to exploit DLP opportuni-
ties (Section 5.3). The phase’s pattern selection and program
extraction decisions are guided by a tangible hardware-aware
cost model (Section 5.4), which leverages the realistic perfor-
mance information collected by instrumenting and profiling
the LLVM IR, and uses a high-level synthesis (HLS) engine
for hardware preformance and overhead estimation towards
the target PDK. Finally, RII solutions, sets of reusable pat-
terns, are translated into sets of custom instructions with
hardware implementation through the HLS engine.

4 Structured DSL
At the entry point of the RII workflow is a domain-specific
language (DSL) designed to represent general programs as
e-graph terms. It captures program semantics, including con-
trol flows, in a structured, dataflow-centric manner.

4.1 DSL Syntax
The syntax of ISAMORE’s structured DSL is defined in Fig-
ure 5. It includes arithmetic, logical, and memory access
operations. We introduce two operations, Loop and If, to
represent program control flows. Especially, a Loop oper-
ation represents a do-while loop. The first argument, 𝑒in,
passes the initial values of the loop-carried variables to the
loop body, and the second argument, 𝑒body, represents the
loop body with loop condition and loop-carried variables
combined as the output list. Besides, the structured DSL
also includes vector operations, including Vec that creates
a vector from scalar values, and the vector version of the
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?𝑥 ∈ PatVars (Pattern Variables, 𝐻𝑜𝑙𝑒𝑠)
𝑢𝑜𝑝 ∈ {Neg, Not, . . . } (Unary Ops)
𝑏𝑜𝑝 ∈ {Add, Load, . . . } (Binary Ops)
𝑡𝑜𝑝 ∈ {Mux, Store, . . . } (Ternary Ops)
𝑒 ::= 𝑙 ∈ Z ∪ F (Literal)

| 𝑢𝑜𝑝 (𝑒) (Unary Op)
| 𝑏𝑜𝑝 (𝑒1, 𝑒2) (Binary Op)
| 𝑡𝑜𝑝 (𝑒1, 𝑒2, 𝑒3) (Ternary Op)
| Arg(𝑖𝑑, 𝑖) (Argument)
| If(𝑒in, 𝑒then, 𝑒else) (Conditional)
| Loop(𝑒in, 𝑒body) (Loop)
| List(𝑒1, . . . ) (Create List)
| Get(𝑒list/vec, 𝑖) (Get from List/Vector)
| Vec(𝑒1, . . . ) (Create Vector)
| Vec 𝑢𝑜𝑝 (𝑒vec) (Vector Unary Op)
| Vec 𝑏𝑜𝑝 (𝑒vec1 , 𝑒vec2 ) (Vector Binary Op)
| Vec 𝑡𝑜𝑝 (𝑒vec1 , 𝑒vec2 , 𝑒vec3 ) (Vector Ternary Op)
| ?𝑥 (Pattern Variable)
| App(𝑒pat, 𝑒∗) (Apply Pattern)

Figure 5. Formal syntax of ISAMORE’s structured DSL.

Get(Loop(List(1,0),
List(
Le(Add(Arg(0,0),1),n),
Add(Arg(0,0),1),
App(
Add(?x,Mul(?y,?y)),
Arg(0,1),Arg(0,0))

)),1)

(a) Structured DSL

Loop

List List

1

≤

0

+

Arg

n

Arg

×

+ App

+

?x ×

?y

i1

<i1,i32,i32>

Get

i32

(b) E-graph representation

Figure 6. Square sum function represented in ISAMORE.

unary, binary, and ternary operations. Finally, it introduces
pattern-related constructs for custom instruction identifi-
cation, including pattern variables (e.g., ?𝑥) to specify the
arguments of a candidate pattern, and an App operation to
apply a candidate pattern to arguments.

4.2 E-Graph Encoding
ISAMORE’s structured DSL represents general programs in
the e-graph data structure. For every expression 𝑒 in the DSL,
it directly maps to an e-node whose constructor is 𝑒’s opera-
tion name and whose children are the e-classes containing
the arguments of 𝑒 . Figure 6a shows the DSL representation
of the square sum (

∑𝑛
𝑖=1 𝑖

2) function, which constructs the
e-graph in Figure 6b. The reduplicated expressions in the
DSL, such as Add(Arg(0,0),1), are absorbed into the same
e-class in the e-graph for compactness. In addition to rep-
resenting original programs, identified patterns and their
applications are also encoded in the e-graph through the App
operation in the DSL.

1 # Structured DSL 𝑑𝑠𝑙, rulesets SR≡, profiling 𝑝

2 def RII(𝑑𝑠𝑙, SR≡, 𝑝):

3 G = egraph(𝑑𝑠𝑙)

4 FP = pareto(∅)
5 S = scheduler(SR≡, 𝑝)

6 while R≡ = S.next(FP):
7 P𝑝𝑟𝑒 =

⋃
𝑃∈FP 𝑃

8 G𝑖𝑛𝑖𝑡 = vectorize(G) if isVector(R≡) else G
9 G′ = eqSat(G𝑖𝑛𝑖𝑡, 𝜅 (P𝑝𝑟𝑒 ) ∪ R≡)
10 P𝑐𝑎𝑛𝑑 = smartAU(G′)
11 F = select(G′, P𝑐𝑎𝑛𝑑, 𝑝)

12 foreach P in F :

13 update(FP, extract(G′, 𝜅 (P), 𝑝))

14 return FP

Figure 7. The top-level RII algorithm.

4.3 Type System
ISAMORE’s structured DSL is strongly typed. It utilizes e-class
analysis [45] to infer the result type for every e-class, build-
ing a mapping from e-classes to the result type domain.While
type propagation for standard dataflow operations follows
standard algebraic rules, the control flow constructs enforce
specific structural constraints defined over type tuples. For-
mally, let ⟨𝜏1, . . . , 𝜏𝑘⟩ denote a tuple of data types and i1
denote a boolean control signal. For If(𝑒in, 𝑒then, 𝑒else), the in-
put 𝑒in must aggregate the condition and arguments as type
⟨i1, 𝜏1, . . . , 𝜏𝑘⟩, with both branches, 𝑒then and 𝑒else, taking the
same arguments and yielding values of the consistent result
type ⟨𝜏 ′1, . . . , 𝜏 ′𝑘 ′⟩. In contrast, for Loop(𝑒in, 𝑒body), the input
𝑒in initializes loop-carried values of type ⟨𝜏1, . . . , 𝜏𝑘⟩, while
the body 𝑒body returns ⟨i1, 𝜏1, . . . , 𝜏𝑘⟩ to capture both the
loop-continuation condition and the updated looped-carried
values. The type system is utilized by the RII workflow to
improve the efficiency of the AU process, as discussed in
Section 5.2.

5 Reusable Instruction Identification
This section introduces RII, the methodology for identify-
ing custom instructions of ideal reusability and parallelism
through tractable e-graph anti-unification.

5.1 Phase-Oriented Iteration
Figure 7 presents the overall algorithm workflow of RII. It
initializes the egraph from the structured DSL (line 3) and cre-
ates an empty Pareto front FP (line 4) to hold solutions, each
of which is a set of patterns for performance-overhead trade-
off. The central process of RII is applying phase-oriented
iterations for pattern identification and selection (lines 6-13).
The key insight is to abandon the single, monolithic appli-
cation of all rewrite rules. Instead, RII runs a sequence of
phases, where each phase applies a smaller, carefully selected
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Structural Hashing

Domain 𝐷H ⊂ {0, 1}64, 𝑠ℎ : (I ∪ N) → 𝐷H

E-class 𝑠ℎ(𝑎) =
(
(∑𝑛∈𝑎 𝑠ℎ(𝑛)𝑖 ) >

size(𝑎)
2

)63
𝑖=0

E-node 𝑠ℎ (𝑠 (𝑎1, . . . , 𝑎𝑘 )) =
Bits64

(
Hash𝑢64

(
𝑠ℎ(𝑠), 𝑠ℎ(𝑎1), . . . , 𝑠ℎ(𝑎𝑘 )

) )
Similarity: 𝑑 (𝑎, 𝑏) = ∑63

𝑖=0 (𝑠ℎ(𝑎)𝑖 ≠ 𝑠ℎ(𝑏)𝑖 )

Sampling Feature: 𝑓 : T (Σ,X) → R

F (𝑠 (𝑝1, . . . , 𝑝𝑘 )) = [𝑓 (𝑝1), . . . , 𝑓 (𝑝𝑘 )]

(a) Formulas for structural hashing and sampling features.

+ +

×

a 2

÷

b ÷ 1

<< × <<

n

H(⑨)=hash(H(+),H(⑥),H(⑦))

① ② ③

⑥

⑦ ⑧

⑨

⑩

H(⑦)
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Figure 8. Smart AU identification: (a) definitions and (b) an example of e-class pairing and AU pattern sampling.

ruleset, denoted as R≡ at line 6. Specifically, P𝑝𝑟𝑒 at line 7
denotes the union of all pattern sets explored by previous
iterations. RII vectorizes the e-graph if required (line 8), con-
ducts EqSat with both pattern-application rewrites 𝜅 (P𝑝𝑟𝑒 )
and rewrites from the ruleset R≡ (line 9), and then identifies
and selects new patterns to update FP (line 10-13).
The iterative approach’s advantages are two-fold. First,

it controls the e-graph scale by applying smaller rulesets,
avoiding the unmanageable e-graph size. Second, it enables
the progressive discovery of increasingly reusable patterns.
Specifically, RII identifies common substructures of pat-
terns from previous phases through the rewrites 𝜅 (P𝑝𝑟𝑒 ).
Figure 3c shows an example, where (x+y)×2 is generalized
into (x+y)×z in a subsequent phase.
Ruleset Construction. The effectiveness of this approach
hinges on ruleset selection. We classify rewrite rules along
several orthogonal dimensions into base rulesets at offline.
Considering the impact on the e-graph’s size, we classify
rules as sat or nonsat, where sat, shortly for saturating, in-
dicates that the rewrites won’t introduce new e-classes. Be-
sides, based on the variable types of rewrites, we classify
rules into int and float. Moreover, we classify rules into vec-
tor and scalar according to the existence of vector terms.
Base rulesets are not disjoint, and we select their union or
intersection to flexibly create rulesets for each phase.
Phase Scheduling. The iterative process is controlled by a
phase scheduler, notated as 𝑆 in Figure 7. It decides the rule-
set to use and the termination of the iteration. Specifically,
RII’s phase scheduler applies int-sat and float-sat rulesets
in the first two phases, respectively, both of which saturate
the e-graph. Then, for every subsequent phase, the sched-
uler selects 𝑛 rules from the nonsat rulesets and applies each
selected rule twice. The iteration stops when the solution
set FP remains unchanged. The phase scheduling strategy
considers both the equivalence exploration and the e-graph
growth. In early phases, the equivalence behind the sat re-
sults is fully exposed without boosting the e-graph’s scale,
which provides reuse opportunities for pattern identification

as much as possible. Then in the following phases, our strat-
egy also exploits the equivalence behind the nonsat rulesets,
but applies the rules in a selective and restrained manner to
avoid e-graph explosion. In this way, the strategy reaches a
good balance between the solution quality and the algorithm
efficiency of the RII workflow.
This strategy not only fully exploits the equivalence be-

hind the sat rulesets through the complete saturation, but
also covers non-saturating rules with a limited number of
uses to avoid e-graph explosion.

5.2 Smart AU Identification
RII introduces the smart AU technique to address the scala-
bility issue of e-graph AU. It comprises two key heuristics:
Similarity-based e-class pairing. RII heuristically selects
only e-class pairs likely to yield meaningful patterns based
on e-class similarity. We use e-class analysis [45] to associate
metadata from a defined domain to each e-class and propa-
gate it for congruence closure. In addition to the result type
domain described in Section 4.3 for pairing type-consistent
e-classes, RII further introduces the structural hashing do-
main, 𝐷H , to pair structurally similar e-classes. Specifically,
e-class pairs of different result types are excluded from pair-
ing. Figure 8a presents the defination. We maintain a 64-bit
structural hash sh for each e-class and e-node. The propaga-
tion of sh follows a recursive scheme: every e-node applies
a 64-bit hash function on its constructor and its children’s
sh values, while every e-class aggregates the contained e-
nodes’ sh values via majority voting at each bit position.
Specifically, the structural hashing assigns uniform sh val-
ues for different literals, arguments, and pattern variables,
eliminating their influence on the e-class paring for better
structural matching used to identify common patterns. RII
then quantifies structural similarity between two e-classes
using the Jaccard distance. Only pairs with a similarity score
above a predefined threshold Θ will be explored. Figure 8b
shows an example, where the e-class 9 and 10 are struc-
turally similar to be paired, and the e-class 9 and 7 are
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not. Combining the result type domain and the structural
hashing domain, RII greatly reduces the number of e-class
pairs for exploration, improving the effectiveness of the AU
process.
Heuristic AU pattern sampling. RII samples a represen-
tative subset of patterns for e-node 𝐴𝑈 sets to avoid the
exponential growth. Specifically, RII employs a feature func-
tion 𝑓 that maps each pattern to a real value, considering
both the latency (prioritized) and area (secondarily). RII in-
troduces two sampling heuristics, boundary and kd-tree. The
boundary strategy only keeps extreme patterns that either
minimize or maximize the feature value, formalized as:

𝐴𝑈B (𝑠 (𝑎1, . . . , 𝑎𝑘 ), 𝑠 (𝑏1, . . . , 𝑏𝑘 )) = {argmin
𝑝∈PB

𝑓 (𝑝), argmax
𝑝∈PB

𝑓 (𝑝)}

where, PB = {𝑠 (𝑝1, . . . , 𝑝𝑘 ) | 𝑝𝑖 ∈ 𝐴𝑈B (𝑎𝑖 , 𝑏𝑖 )}

This heuristic brutally selects two very different patterns,
improving the algorithm’s efficiency. Instead, the kd-tree
strategy tends to select broader distinct patterns according
to the feature vector F(𝑝) for each pattern 𝑝 , as formalized in
Figure 8a. It builds a KD-tree [9] data structure for potential
AU patterns 𝑝 ∈ P𝑘𝑑 with 𝐹 (𝑝) as coordinates, and partitions
the overall space into𝑚 = 2𝑑 cells by the first 𝑑 dimensions
of the KD-tree. We then sort the patterns in each cell by the
feature function 𝑓 and sample 𝛽 evenly spaced patterns from
the sorted sequence. Finally, we union the sampled patterns
to form the final 𝐴𝑈𝑘𝑑 of𝑚𝛽 patterns. The kd-tree strategy
mediates the algorithm efficiency for sampling coverage.
Combining similarity-based pairing with heuristic sam-

pling, smart AU makes pattern identification in e-graphs
both scalable and effective. As illustrated in Figure 8b, our
approach processes structurally similar e-class pairs (e.g.,
9 and 10 ) and keeps representative patterns per pair (two
patterns for 6 and 8 ), guiding identification to be tractable.

5.3 AU-based Pattern Vectorization
RII exploits DLP from scalar inputs based on the key insight:
a vectorized pattern can be conceptualized as one pattern
applied across lanes of terms, and e-graph AU can identify
lane-level common patterns. RII introduces the novel pattern
vectorization technique, comprising the following steps:
Seed packing: locates the vectorization candidates-the seeds-
within the scalar e-graph and transforms the e-graph to
contain hybrid scalar-vector terms. We first run smart AU
identification to find patterns that match multiple e-graph
terms. For each identified scalar pattern, we use e-matching
to find instances (seeds), whose roots form a seed pack if the
instance terms belong to the same basic block in the original
program. We then insert Vec e-nodes to unify the e-classes
of a seed pack as a vector term, as illustrated in Figure 9a.
Pack expansion: constructs hybrid scalar-vector e-graphs. It
is unrealistic to learn vectorized patterns without vectorized
constructors in the e-graph. Therefore, we use lift rewrites
from the vector ruleset to recover the vector constructors by
expanding the seed packs. A lift rewrite finds Vec applied
on terms of the same scalar constructor, and replaces every
match with a vectorized equivalent, such as the rule for
introducing the vectorized add constructor: (Vec (Add a b)
(Add c d))⇝(VecAdd (Vec a c) (Vec b d)). To enable
data flow from vector to scalar in the e-graph, we also apply
couple rewrites, which insert Get e-nodes to extract scalar
lanes from a Vec term. Figure 9b shows an example of the
expansion process, preparing a hybrid scalar-vector e-graph
for vectorized pattern identification.
Acyclic pruning: reduces the e-graph scale with cycles elim-
inated. The e-graph tightly coupling scalar and vector terms
exhibits two critical limitations: e-graph scale explosion due
to combinational length-agnostic packing decisions among
seeds, and the existence of Get→Vec→Get cycles as illus-
trated in Figure 9b, which severely degrades the extraction
quality (Section 5.4), even leading to infeasible cases. To ad-
dress the issues, we first employ a greedy e-graph extractor
with a custom cost function that deliberately favors vector
constructors of high DLP. The extracted terms represent a
specific vectorization scheme, which is then fused into the
original scalar e-graph through a variant of Enumo [51]’s
compress operation. This approach keeps a specific vector-
ization scheme in the e-graph rather than storing all vec-
torization opportunities, which avoids duplicated packing
and cycles. Although the pruning heuristic might miss op-
portunities for vectorization and instruction identification
due to the greedy nature of the extractor, it effectively re-
duces the e-graph’s scale and eliminates any cycles, which
is essential for both AU and extraction. In practice, it keeps
non-overlapping vectorization operations of high DLP as
much as possible, enabling AU-based pattern identification
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from them. Eventually, the acyclic pruning yields a light-
weight and acyclic e-graph that maintains tight scalar-vector
coupling, as illustrated in Figure 9c.
The hybrid scalar-vector e-graph is then used for sub-

sequent phases of pattern identification and selection, as
shown in Figure 7, comprehensively considering vectorized
and scalar candidate patterns for overall performance.

5.4 Hardware-Aware Selection and Extraction
RII introduces a profiling-based, hardware-aware cost model
to guide the multi-objective pattern selection and extraction.

5.4.1 Cost model: estimates the performance and area
impact of introducing an identified pattern as a custom in-
struction, as formalized:

Δ𝐿 (𝑝) =
∑
𝑢∈𝑢𝑠𝑒 (𝑝 )

(∑
𝑜∈𝑝 CPO (𝑏𝑏 (𝑜,𝑢)) − 𝐿𝐻𝐿𝑆 (𝑝)

)
(1)

𝑆 (P) =
𝐿cpu

𝐿(P) =
𝐿cpu

𝐿cpu −
∑
𝑝∈P Δ𝐿 (𝑝)

(2)

𝐴(P) = ∑
𝑝∈P 𝐴𝐻𝐿𝑆 (𝑝) (3)

where Δ𝐿 (𝑝) denotes the total latency saving of pattern
𝑝 reused multiple times over the software execution. For
each use 𝑢, the latency saving is calculated by subtracting
the hardware accelerator latency from the software latency.
Software latency is estimated as the sum of the profiled
cycles per operation (CPO) of the basic block 𝑏𝑏 (𝑜,𝑢) for
each constructor 𝑜 in 𝑝 . Hardware latency is reported by a
lightweight high-level synthesis (HLS) engine performing
as-soon-as-possible scheduling for 𝑝’s serialized behavior.
Especially, the HLS engine applies loop pipelining when 𝑝
contains Loop constructors. Notably, latencies are calculated
in nanoseconds considering the device frequency. The overall
speedup and the area overhead are calculated according to
Eq 2 and Eq 3, respectively.

5.4.2 Multi-objective selection. We leverage e-class anal-
ysis [45] to find a set of Pareto-optimal solutions, where each
solution represents a trade-off between speedup and area.
The analysis associates a Pareto front F for each e-class and
e-node, whose element P𝑘 is a pattern set. The propogation
of F is formalized as:

F (𝑠 (𝑎1, . . . , 𝑎𝑘 )) =
∏F (𝑎𝑖 ) = {⋃P𝑖 | P𝑖 ∈ F (𝑎𝑖 )}

F (App(𝑝, 𝑎1, . . . , 𝑎𝑘 )) = {P ∪ {𝑝} | P ∈ ∏F (𝑎𝑖 )}

F (𝑎) = prune
(⋃

𝑛∈𝑀 (𝑎) F (𝑛)
)

For a non-App e-node, the F is calculated by constructing
the Cartesian product of its children’s F s. For an App e-
node, each pattern set in the product is extended by the
pattern applied. The Pareto optimality is maintained during
the propagation, with the latency saving (Eq 1) approximated
by substituting pattern 𝑝’s actual uses by its matches in
the e-graph. For an e-class, it unions the F s of its e-nodes,
and conducts the prune operation to keep only the top 𝐾

solutions considering the prioritized speedup metric in a
beam search manner. The final Pareto front of the root e-
class provides the selection solutions.

5.4.3 Extraction and refinement. To derive more accu-
rate cost modeling and truly promising solutions, we per-
form a final extraction and refinement step on the selected
solutions. For each non-dominated solution P, we perform
e-graph extraction with the patterns applied as rewrite rules
𝜅 (P). The extraction cost function is configured to maximize
total latency saving calculated by Eq 1 without approxima-
tion. After extraction, we perform fidelity refinement, which
recalculates the cost model (Eq 2 and Eq 3) on the extracted
program with the patterns adopted, and updates the global
solution set FP , as shown in line 13 of Figure 7.

6 Implementation
ISAMORE is implemented as a comprehensive application
analysis and instruction customization framework. The fron-
tend implements two LLVM passes with LLVM 18 [39, 41].
The first transforms LLVM IR into ISAMORE’s structured DSL,
building upon JLM [56]’s implementation for control flow
restructuring. The second pass instruments the LLVM bit-
code, inserting markers at basic block boundaries. To acquire
realistic performance data, we implemented a custom tracer
in GEM5 [43] to detect the instrumented markers and collect
detailed performance metrics, including cycles per opera-
tion (CPO) and execution count for each marked basic block,
which informs the cost model in Section 5.4.1.

The core of ISAMORE materializes the entire RII work-
flow in Rust, building upon the egg [45] and babble [13]
frameworks with 20157 LOC extension. For the cost model,
ISAMORE’s HLS engine calls the regression-based operation
delay and area estimators from XLS [33]. For offline rewrite
ruleset generation, we implement Enumo [51] traits for the
DSL and describe rule enumeration with an SMT backend for
equivalence checking (881 LOC). Finally, ISAMORE synthe-
sizes the solution patterns into Verilog through CIRCT [20].

7 Evaluation
We evaluate ISAMORE by addressing the following questions:
1. Can RII techniques enable e-graph anti-unification for

instruction identification? (Section 7.1.1)
2. How do ISAMORE-identified custom instructions perform

compared to the baseline approaches? (Section 7.1.2)
3. How do RII’s heuristics and features affect tractability

and solution quality? (Section 7.1.3)
4. Can ISAMORE scale to real-world applications? (Section 7.2.1)
5. How can ISAMORE help designers to explore hardware

specialization in practice? (Section 7.2.2, Section 7.2.3)

Methodology. We report the overall speedup calculated by
Eq 2 for the performance study. The target clock frequency
is set to 1GHz for HLS scheduling. For hardware overheads,
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Table 2. Benchmark kernels and ISAMORE’s running statistics with RII features enabled or not. The e-graph size, either original
or peak, is reported by the number of e-nodes. |P𝑐𝑎𝑛𝑑 | denotes the number of identified candidate patterns.

Benchmark Description LLVM IR LOC Orig. Size Peak Size |P𝑐𝑎𝑛𝑑 | Runtime Memory

LLMT RII LLMT RII LLMT RII LLMT RII
2DConv 2D convolution 169 339 10286 400 633K 133 707s 25s >30GB 60MB
MatMul Matrix multiply 94 189 10406 263 233K 49 516s 24s >30GB 138MB
MatChain Matrix chain multiplication 103 218 10377 294 19K 46 860s 41s >30GB 187MB
FFT Fast Fourier Transform 132 263 10505 272 299K 68 610s 16s >30GB 39MB
Stencil 2D stencil 88 184 10225 260 16K 61 104s 41s >30GB 100MB
QProd Quaternion product 194 224 10293 333 80K 192 221s 98s >30GB 231MB
QRDecomp QR decomposition 496 1426 10319 1728 34K 127 2538s 145s >30GB 799MB
Deriche Deriche edge detector 270 677 10380 783 26K 77 3075s 27s >30GB 126MB
SHA SHA-256 secure hash algorithm 339 798 10944 987 94K 89 3580s 83s >30GB 173MB
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Figure 10. Performance gains and area overheads of Pareto solutions produced by ISAMORE and baseline approaches. The
x-axis denotes the total area (𝜇𝑚2), and the y-axis denotes the overall speedup (×) over general-processor execution.

we report the final synthesized area produced by the Open-
ROAD flow (v2.0-16235) [4] targeting ASAP7 PDK. We run
evaluations on a machine equipped with two AMD EPYC
7763 CPUs (128 cores/256 threads, 1.8TiB RAM) running
Ubuntu 22.04. For each run, we open a standalone process
with a timeout of 2.5 hours and a memory limit of 30 GB by
default. ISAMORE’s offline ruleset generation introduces 1164
equational rewrite rules after 20 hours of enumeration.

7.1 Identifying Instructions for Benchmark Kernels
Table 2 shows the benchmark kernels used in our evaluation.
They are a collection of kernels for use cases in computer vi-
sion, machine perception, digital signal processing, and cryp-
tography. The source code are retrieved from Diospyros [60],
PolyBench [42], Machsuite [54], and Coremark-PRO [1]. We
count and report the LLVM IR LOC for the kernel functions,
which range from 88 to 496 after LLVM’s optimization with
the flag -O3. LLVM conducts loop unrolling, exposing reuse
and vectorization opportunities. For profiling, we set up the
GEM5 simulation configuration based on the O3_ARM_v7a_3
CPU model with 32KiB L1-I/L1-D and 1MiB L2 cache.

7.1.1 Comparison with vanilla e-graph AU.. Table 2
compares the running statistics for RII features disabled
and enabled. With RII disabled, ISAMORE runs the vanilla
LLMT [13] in a single-phase, exhaustivemanner.We configure
RII to adopt the boundary strategy for pattern sampling,
which is denoted as the Defaultmode. The results show RII
effectively reduces the peak e-graph sizes by 6-39×, thanks
to RII’s phase-oriented iterative approach. LLMT’s candidate
patterns explode up to 633K, causing memory overflows
(>30GB) in all cases. Notably, LLMT’s vanilla e-graph AU
process still runs out ofmemory even if we adopt RII’s phase-
oriented equality saturation for it, due to the essentially
intractable complexity. With RII features, all benchmarks
completed within 145 seconds, using no more than 799MB of
memory. The comparison demonstrates that RII techniques
qualify e-graph AU for tractable instruction identification.

7.1.2 Comparisonwith baselines. We compare ISAMORE
with three baseline approaches: ENUM, which implements
fine-grained convex subgraph enumeration inspired by [22,
29], NOVIA [59], which produces coarse-grained accelerators
through syntactic merging, and NoEqSat, which skips EqSat
in RII Default mode to disable semantic consideration. For
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Table 3. Statistics for NOVIA and ISAMORE modes.

Count Size Reuse Runtime Memory
NOVIA 1.8 23.2 3.2 0.4s 4MB
AstSize 5.2 9.4 4.7 116.1s 167MB
Default 7.8 8.0 6.6 19.9s 116MB
KDSample 7.8 8.4 6.4 109.3s 696MB
Vector 11 12.5 3.5 34.0s 124MB

ISAMORE, we run the Default mode with vectorization dis-
abled. We update the latest NOVIA version (1.5.0, 2024) with
ISAMORE’s profiling-driven cost model (Section 5.4.1) for fair
comparison.We configure the approaches to uniformly adopt
NOVIA’s loose I/O constraints with RoCC [7]-style memory
system access support. We add an All benchmark that com-
poses all nine kernels, individually repeated for a close time
portion, to evaluate a multi-kernel scenario.
Figure 10 shows the evaluation results. ISAMORE consis-

tently achieves higher speedups than baselines with moder-
ate area overheads. The NOVIA solutions cannot achieve ideal
speedup in most benchmarks, even with much larger area, es-
pecially forQRDecomp andAll, because NOVIA offloadswhole
basic blocks, which requires a large area and contains instruc-
tion sequences that run faster on the processor of a higher
clock frequency, worsening performance. NOVIA accelera-
tors also have low reusability as shown in Table 3. ISAMORE’s
max-speedup solutions achieve 1.52× average speedup over
NOVIA’s, with speedups ranging from 1.12× to 1.94×. Both
ENUM and NoEqSat can identify fine-grained patterns. Across
all the benchmarks, ENUM requires more area to achieve a
similar speedup as ISAMORE, since ENUM generates duplicated
instructions of rare differences, demonstrating the impor-
tance of reusability-guided identification. Besides, ISAMORE
achieves higher performance gains even with less area than
NoEqSat. For instance, ISAMORE achieves 2.02× for Deriche,
higher than NoEqSat’s 1.51×, while saving 46.7% area. Across
the benchmarks, ISAMORE’s maximum speedup is on average
1.12× higher than NoEqSat’s, whereas the average area is
84.9% of NoEqSat’s. This trend demonstrates that ISAMORE
exploits semantic equivalence for more acceleration.

7.1.3 Comparison of differentmodes. Weevaluatemore
modes of ISAMORE to understand the impacts of the RII
features. Derived from Default, AstSize mode uses the
hardware-agnostic term size as the selection and extraction
objective, KDSample mode uses the kd-tree pattern sampling
strategy, and Vector mode runs the pattern vectorization in
the first phase. Figure 11 shows their achieved maximum
speedups across the benchmarks, and Table 3 shows the solu-
tions’ statistics, including custom instruction count, number
of operations per instruction (size), reuse factor per instruc-
tion, etc. AstSize mode achieves the worst performance
gains for all benchmarks, demonstrating the significance of
hardware-aware selection and extraction. KDSample mode

outperforms Default on QProd, Deriche, and All, because it
samples more representative patterns and potentially iden-
tifies larger patterns that accelerate more instructions per
trigger. KDSample mode’s disadvantage is the long explo-
ration time and high memory usage, as shown in Table 3.
To evaluate the pattern vectorization features, we further

enable vectorized access to the memory system from a cus-
tom instruction unit, as the Hwacha [40] vector unit does.
Vector mode outperforms Default on 8 out of 10 bench-
marks, with notable improvements on MatMul, MatChain,
and QRDecomp. One exception is 2DConv, whose DLP po-
tentials are not exploited. The reason is that LLVM does
not apply if-conversion [5] to expose operations surrounded
by bounds checking, hindering vectorization. Although the
improvements over Default are moderate (up to 1.68×), be-
cause the loose I/O constraint allows DLP operations to also
appear in wide scalar custom instructions, ISAMORE’s per-
formance superiority over NOVIA and ENUM rises to average
1.76× (up to 2.69×) and 1.46× (up to 1.95×) with vectorization
enabled, demonstrating pattern vectorization’s effectiveness.
In addition, ISAMORE’s structured DSL encodes control

flow constructs in e-graph, which enables the identifica-
tion of reusable hardware loops. We further evaluate the
MatChain benchmark with the matrix multiply function in-
lined twice, leading to two common loop constructs. ISAMORE
identifies and selects the matrix multiply’s innermost loop,
which LLVM partially unrolls, as a common pattern. It gener-
ates an accelerator of loop pipeline architecturewithmemory
accesses inside the loop body vectorized, achieving 50.52×
speedup compared to general processor execution. Identi-
fying reusable hardware loops is beyond the scope of the
baseline approaches, demonstrating ISAMORE’s general iden-
tification granularity.

7.2 Real-World Case Studies
We evaluate ISAMORE by multiple case studies, including an-
alyzing three open-source libraries across different domains
and specializing processors for quantized LLM inference and
post-quantum cryptography workloads.

7.2.1 Domain-specific libraries. This section studies the
following domains: digital signal processing, image process-
ing, and point cloud processing. We pick open-source C/C++
libraries with rich examples as the representative applica-
tions to run ISAMORE. The liquid-dsp provides DSP primitives
for software-defined radio applications on embedded plat-
forms. We pick six representative modules, as summarized
in Table 4. For profiling, we configure the GEM5 simulation
using the Minor CPU model to mimic an embedded platform.
We modify the CMake configuration to enable instrumenta-
tion and run GEM5 for 174 examples to profile the modules.
We apply ISAMORE to each module individually. CImg is a
self-contained C++ template image processing library. We
run 30 examples with interactive visualization, and substitute
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Figure 11. Maximum speedup achieved by different ISAMORE modes on the benchmarks.

Table 4. Selected liquid-dsp and PCL modules.

Module Description Size
agc Automatic gain control. 1K
audio CVSD audio encoder. 1K
fec Forward error correction with convolutional

codes, Reed-Solomon codes, etc.
5K

filter Digital filtering capabilities with FIR, IIR, etc. 9K
optim Gradient search and quasi-Newton methods. 2K
equalization Adaptive equalizers: LMS, RLS, etc. 3K
filters Filtering mechanisms including noise removal,

outlier rejection, and downsampling.
9K

octree Hierarchical spatial data structure for search,
voxelization, and neighborhood queries.

9K

segment Segmenting point clouds into clusters. 3K
surface Reconstructing the original surfaces. 5K
sac Random Sample Consensus (RANSAC). 6K
search Searching for nearest neighbors in point clouds. 7K
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Speedup Area Count Size Reuse

NOVIA 1.01× 10314𝜇𝑚2 1 167 8
ISAMORE 1.18× 975𝜇𝑚2 8 3 93

(c) CImg results.

Figure 12. Experimental results for real-world libraries.

the slow GEM5 simulation with a fast LLVM-based profiling
execution. The original e-graph for analysis contains 45K
e-classes. PCL is a large-scale project for point cloud process-
ing. We adopt the same profiling methodology as CImg, and
apply ISAMORE to six modules individually, with the original
e-class sizes up to 9K, as shown in Table 4.
We run ISAMORE in Vector mode for the libraries. For

liquid-dsp, Figure 12a shows that ISAMORE achieves higher
speedup than NOVIA on the modules except fec, for which
NOVIAmerges the computation of different FEC codes, achiev-
ing ideal acceleration results. On average, ISAMORE achieves
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Figure 13. Case study on BitNet.

1.39× speedup over NOVIA with 84.0% area saving and out-
performs ENUM by 1.21×. On the monolithic CImg library, Fig-
ure 12c shows the comparison, where NOVIA generates one
huge custom hardware unit of size 167 frommerging eight ba-
sic blocks, and ISAMORE identifies eight custom instructions,
with an average reuse count of 93. Detailed analysis shows
that ISAMORE-identified instructions perform pixel modifica-
tion based on computed indices, conditional operations with
mask generation, and type conversions. Such highly reusable
instructions are valuable for ISA specialization. ISAMORE’s
identified instructions achieve 1.18× speedup with only 975
𝜇𝑚2 area, saving 90.5% area than NOVIA, which achieves
merely 1.01× speedup. For the PCLmodules, ISAMORE achieves
1.64× average speedup over NOVIA (up to 2.73×) with 93.2%
area saving and outperforms ENUM by 1.18×. Overall, ISAMORE
consistently delivers better performance across applications.

7.2.2 Quantized LLM.. We further conduct a comprehen-
sive case study on the 1-bit Language Language Model (LLM)
BitNet b1.58 [44]’s inference, to evaluate ISAMORE’s effective-
ness for processor specialization. It adopts a ternary weight
representation {−1, 0, +1} and uses BitLinear, as illustrated
in Figure 13a, to replace conventional matrix multiplication
in the Transformer [61] architecture. While this design offers
significant potential for performance gains, its real-world
benefits are often limited by the lack of specialized hardware
units for low-bit operations. For example, dot product be-
tween 8-bit inputs and 2-bit weights on a general processor
either uses inefficient multiply-then-add (MAD) instructions
or needs a carefully crafted software look-up table.
We analyze a MAD-based implementation of a BitLinear

originated from bitnet.cpp [65] using ISAMORE and reveals
a vectorized pattern computing packed low-bit dot product,
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as depicted in Figure 13b, through RII’s e-graph AU flow
and pattern vectorization. ISAMORE’s backend generates a
hardware description for the custom unit with the RoCC [7]
wrapper. It configures a Rocket tile [6, 7] to instantiate the
custom unit and runs Verilator [64] for RTL simulation to get
precise performance reports, showing a 2.15× speedup for
BitLinear over the baseline Rocket tile. The speedup is mod-
erate due to the IO bandwidth constraint (32 bits per scalar
register) on the vectorization length. ISAMORE also runs the
OpenROAD flow for physical design, reporting 4.81% area
overhead and no frequency decrease at 161.29MHz.

7.2.3 Post-Quantum Cryptography. Extending ISA for
PQC is recognized as an important task by the RISC-V secu-
rity standing committee [36] and has been explored by prior
works [26, 27, 38]. As the standardization process of PQC is
still ongoing, it’s important to automate hardware acceler-
ation for newly evolving algorithms. We study CRYSTALS-
KYBER [11], a standardized key encapsulation mechanism
(KEM), defined over the polynomial ring Z𝑞 [𝑥]/⟨𝑥𝑁 + 1⟩
with the polynomial multiplication as the computational
bottleneck. We run ISAMORE for a CRYSTALS-KYBER imple-
mentation with Number Theoretic Transform (NTT) to re-
duce polynomial multiplication’s complexity, under the same
configuration as Section 7.2.2. ISAMORE identifies a custom
instruction corresponding to the butterfly operation, which
is reused by forward NTT and inverse NTT. It implements a
RoCC accelerator for the Rocket tile system, achieving 5.15×
speedup according to RTL simulation. OpenROAD reports
17.67% area overhead due to expensive hardware multipliers,
and 2.58% frequency decrease. This case study demonstrates
ISAMORE’s potential for automated hardware specialization
to keep pace with software evolution.

8 Related Work
Algorithms for enumerating dataflow subgraphs for fine-
grained custom instructions [8, 17, 21, 22, 29, 52, 53, 55] have
been well studied to handle convexity and I/O constraints.
[3, 10] explored instruction recurrence; they adopt graph
isomorphism to filter the enumerated subgraphs rather than
guide enumeration with reusability as RII does. [3, 32] intro-
duces canonicalized representations to unveil more syntactic
merging opportunities. RII is the first to consider semantic
equivalence. C-Cores and GreenDroid [35, 62] offload func-
tions and loops to custom accelerators, and QsCores [63]
mines syntactic common patterns. They exclusively sup-
port coarse-grained specialization, while ISAMORE supports
more general granularity. PICO [2] and FINDER [30] identify
parallel custom instructions for VLIW architectures, while
APEX [46] and RADISH [66] customize processing elements
from common patterns for domain-specific reconfigurable
accelerators, both of which are potential stages for ISAMORE.

E-graph is a powerful data structure for rewrite-based op-
timization. Diospyros [60] vectorizes DSP kernels to exploit

existing parallel instructions via equality saturation, and Is-
aria [58] extends it with automatic rule synthesis to automate
the construction of rewrite-based compilers. ISAMORE solves
a complementary problem, identifying new custom instruc-
tions for an application domain. It is an open problem to
compose Isaria and ISAMORE for both instruction customiza-
tion and compiler generation in an exploration loop. E-graph
techniques are also used for high-level synthesis [19] and
logic synthesis [14, 15, 24, 71], which can be absorbed into
ISAMORE for better hardware implementation.

9 Conclusion
This paper presents ISAMORE, an end-to-end framework that
implements the RII methodology for reusable instruction
customization. It introduces scalable e-graph anti-unification
to identify semantic-aware common patterns and exploit
data-level parallelism for vectorized custom instructions.
ISAMORE outperforms baseline approaches by up to 2.69× on
benchmarks, and its practical effectiveness is demonstrated
through rich case studies.
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